A256046
Main diagonal of A256045: order of all-2s configuration on the n X n sandpile grid graph.
Original entry on oeis.org
1, 8, 3, 52, 29, 272, 901, 73124, 89893
Offset: 2
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015.
A007341
Number of spanning trees in n X n grid.
Original entry on oeis.org
1, 4, 192, 100352, 557568000, 32565539635200, 19872369301840986112, 126231322912498539682594816, 8326627661691818545121844900397056, 5694319004079097795957215725765328371712000, 40325021721404118513276859513497679249183623593590784, 2954540993952788006228764987084443226815814190099484786032640000
Offset: 1
From _M. F. Hasler_, Mar 07 2018: (Start)
For n = 1, there exists only one 0 X 0 matrix, e_0 = []; it is the neutral element of the singleton group S(0) = {[]}.
For n = 2, the sandpile addition is isomorphic to addition in Z/4Z, the neutral element is e_1 = [0] and we get the group S(1) isomorphic to (Z/4Z, +).
For n = 3, one finds that e_2 = [2,2;2,2] is the neutral element of the sandpile addition restricted to S(2), having 192 elements, listed in A300006.
For n = 4, one finds that e_3 = [2,1,2;1,0,1;2,1,2] is the neutral element of the sandpile addition restricted to S(3), having 100352 elements.
For n = 5, the neutral element is e_4 = [2,3,3,2; 3,2,2,3; 3,2,2,3; 2,3,3,2]. (End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..45
- Anakin Dey, Sam Ruggerio, and Melkior Ornik, Optimizing a Model-Agnostic Measure of Graph Counterdeceptiveness via Reattachment, arXiv:2311.15093 [math.OC], 2023. See p. 10.
- Noah Doman, The Identity of the Abelian Sandpile Group, Bachelor Thesis, University of Groningen (Netherlands 2020).
- Laura Florescu, Daniela Morar, David Perkinson, Nick Salter and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015), Paper #P1.66
- Luis David Garcia-Puente and Brady Haran, Sandpiles, Numberphile video, on YouTube.com, Jan. 13, 2017
- Antal A. Járai, Sandpile models, arXiv:1401.0354 [math.PR], 2014.
- Germain Kreweras, Complexite et circuits Euleriens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- Lionel Levine and James Propp, What is... a sandpile?, Notices of the AMS, Volume 57 (2010), Number 8, 976-979.
- F. Redig, Mathematical aspects of the abelian sandpile model (2005)
- W.-J. Tzeng, F. Y. Wu, Spanning Trees on Hypercubic Lattices and Non-orientable Surfaces. arXiv:cond-mat/0001408v1 [cond-mat.stat-mech], Jan 2000.
- W.-J. Tzeng and F. Y. Wu, Dimers on a simple-quartic net with a vacancy, arXiv:cond-mat/0203149v2 [cond-mat.stat-mech], Mar 2002.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- David B. Wilson, Local statistics of the abelian sandpile model (2014)
- F. Y. Wu, Number of spanning trees on a lattice, J. Phys. A: Math. Gen., 10 (1977) no. 6, L113-L115.
- Index to divisibility sequences
Cf.
A080690 (number of acyclic orientations),
A080691 (number of spanning forests),
A349718 (number of spanning trees, reduced for symmetry).
-
a:= n-> round(evalf(2^(n^2-1) /n^2 *mul(mul(`if`(j<>0 or k<>0, 2 -cos(Pi*j/n) -cos(Pi*k/n), 1), k=0..n-1), j=0..n-1), 15 +n*(n+1)/2)): seq(a(n), n=1..20); # Alois P. Heinz, Apr 15 2011
# uses expression as a resultant
seq(resultant(simplify(ChebyshevU(n-1, x/2)), simplify(ChebyshevU(n-1, (4-x)/2)), x), n = 1 .. 24); # Peter Bala, Apr 29 2014
-
Table[2^((n-1)^2) Product[(2 - Cos[Pi i/n] - Cos[Pi j/n]), {i, 1, n-1}, {j, 1, n-1}], {n, 12}] // Round
Table[Resultant[ChebyshevU[n-1, x/2], ChebyshevU[n-1, (4-x)/2], x], {n, 1, 12}] (* Vaclav Kotesovec, Apr 15 2020 *)
-
{a(n) = polresultant( polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2) )}; /* Michael Somos, Aug 12 2017 */
A103997
Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 41, 71, 18, 1, 1, 153, 769, 539, 47, 1, 1, 571, 8449, 17753, 4271, 123, 1, 1, 2131, 93127, 603126, 434657, 34276, 322, 1, 1, 7953, 1027207, 20721019, 46069729, 10894561, 276119, 843, 1, 1, 29681, 11332097, 714790675, 4974089647, 3625549353, 275770321, 2226851, 2207, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1,
1, 3, 7, 18, 47, 123, 322,
1, 11, 71, 539, 4271, 34276, 276119,
1, 41, 769, 17753, 434657, 10894561, 275770321,
1, 153, 8449, 603126, 46069729, 3625549353, 289625349454,
1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063,
...
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, El. J. Comb., 22 (2015), P1.66. See Theorem 18.
- W. T. Lu and F. Y. Wu, Dimer statistics on the Moebius strip and the Klein bottle, arXiv:cond-mat/9906154 [cond-mat.stat-mech], 1999.
- Index entries for sequences related to dominoes
-
T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}];
Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)
A256043
Order of all-2s configuration on the 2n X 2n sandpile grid graph.
Original entry on oeis.org
1, 3, 29, 901, 89893, 5758715, 22687425
Offset: 1
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, Tianyuan Xu, Sandpiles and Dominos, Illustration of recurrent identity element for the sandpile grid graph [Figure 1 from Sandpiles and Dominos paper] [Le Borgne et al., 2002, show a very similar figure - see Fig. 7.]
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015. Also arXiv:1406.0100, May 31 2014. [Mentions this sequence together with a different sequence (A065072) with the same initial terms]
- Le Borgne, Yvan, and Dominique Rossin, On the identity of the sandpile group, Discrete mathematics 256.3 (2002): 775-790.
- David Perkinson, Lecture 15: Sandpiles, PCMI 2008 Undergraduate Summer School. Gives a(7).
Bisection of main diagonal of
A256045.
A348566
Triangle read by rows: T(m, n) is the number of symmetric recurrent sandpiles on an m X n grid (m >= 0, 0 <= n <= m).
Original entry on oeis.org
1, 1, 4, 1, 3, 2, 1, 14, 7, 128, 1, 11, 5, 71, 36, 1, 52, 18, 1358, 539, 43264, 1, 41, 13, 769, 281, 17753, 6728, 1, 194, 47, 14852, 4271, 1452866, 434657, 151519232, 1, 153, 34, 8449, 2245, 603126, 167089, 46069729, 12988816, 1, 724, 123, 163534, 34276, 49704772, 10894561, 16236962114, 3625549353, 5475450241024
Offset: 0
The triangle begins:
1
1 4
1 3 2
1 14 7 128
1 11 5 71 36
1 52 18 1358 539 43264
1 41 13 769 281 17753 6728
...
See Fig. 9 of the paper by Florescu et al. for the T(4, 4) = 36 symmetric recurrent sandpiles on a 4x4 grid.
A256047
a(n) = A256046(2n+1): order of all-2s configuration on the (2n+1) X (2n+1) sandpile grid graph.
Original entry on oeis.org
8, 52, 272, 73124
Offset: 1
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015.
Showing 1-6 of 6 results.
Comments