A103997
Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 41, 71, 18, 1, 1, 153, 769, 539, 47, 1, 1, 571, 8449, 17753, 4271, 123, 1, 1, 2131, 93127, 603126, 434657, 34276, 322, 1, 1, 7953, 1027207, 20721019, 46069729, 10894561, 276119, 843, 1, 1, 29681, 11332097, 714790675, 4974089647, 3625549353, 275770321, 2226851, 2207, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1,
1, 3, 7, 18, 47, 123, 322,
1, 11, 71, 539, 4271, 34276, 276119,
1, 41, 769, 17753, 434657, 10894561, 275770321,
1, 153, 8449, 603126, 46069729, 3625549353, 289625349454,
1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063,
...
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, El. J. Comb., 22 (2015), P1.66. See Theorem 18.
- W. T. Lu and F. Y. Wu, Dimer statistics on the Moebius strip and the Klein bottle, arXiv:cond-mat/9906154 [cond-mat.stat-mech], 1999.
- Index entries for sequences related to dominoes
-
T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}];
Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)
A187617
Array T(m,n) read by antidiagonals: number of domino tilings of the 2m X 2n grid (m>=0, n>=0).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 13, 36, 13, 1, 1, 34, 281, 281, 34, 1, 1, 89, 2245, 6728, 2245, 89, 1, 1, 233, 18061, 167089, 167089, 18061, 233, 1, 1, 610, 145601, 4213133, 12988816, 4213133, 145601, 610, 1
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 13, 34, 89, ...
1, 5, 36, 281, 2245, 18061, ...
1, 13, 281, 6728, 167089, 4213133, ...
1, 34, 2245, 167089, 12988816, 1031151241, ...
1, 89, 18061, 4213133, 1031151241, 258584046368, ...
- Alois P. Heinz, Antidiagonals n = 0..26, flattened
- N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 1.
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, El. J. Comb., 22 (2015), P1.66. See Theorem 15.
- Index entries for sequences related to dominoes
-
ft:=(m,n)->
2^(m*n/2)*mul( mul(
(cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
T:=(m,n)->round(evalf(ft(m,n),300));
-
T[m_, n_] := Product[2(2 + Cos[(2j Pi)/(2m+1)] + Cos[(2k Pi)/(2n+1)]), {j, 1, m}, {k, 1, n}];
Table[T[m-n, n] // Round, {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 05 2018 *)
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*cos(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))} \\ Seiichi Manyama, Jan 09 2021
A256045
Triangle read by rows: order of all-2s configuration on the n X k sandpile grid graph.
Original entry on oeis.org
2, 3, 1, 7, 7, 8, 11, 5, 71, 3, 26, 9, 679, 77, 52, 41, 13, 769, 281, 17753, 29, 97, 47, 3713, 4271, 726433, 434657, 272, 153, 17, 8449, 2245, 33507, 167089, 46069729, 901, 362, 123, 81767, 8569, 24852386, 265721, 8118481057, 190818387, 73124, 571, 89, 93127, 18061, 20721019, 4213133, 4974089647, 1031151241, 1234496016491, 89893
Offset: 1
Triangle begins:
[2]
[3, 1]
[7, 7, 8]
[11, 5, 71, 3]
[26, 9, 679, 77, 52]
[41, 13, 769, 281, 17753, 29]
[97, 47, 3713, 4271, 726433, 434657, 272]
[153, 17, 8449, 2245, 33507, 167089, 46069729, 901]
[362, 123, 81767, 8569, 24852386, 265721, 8118481057, 190818387, 73124]
[571, 89, 93127, 18061, 20721019, 4213133, 4974089647, 1031151241, 1234496016491, 89893]
...
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015.
- David Perkinson, Lecture 15: Sandpiles, PCMI 2008 Undergraduate Summer School.
A348567
Number of fully symmetric recurrent sandpiles on an n X n grid.
Original entry on oeis.org
1, 4, 2, 32, 12, 832, 232, 69632, 14416, 18719744, 2876576
Offset: 0
a(0) = 1, the empty sandpile on an empty grid.
a(1) = 4, all 4 sandpiles on a 1 X 1 grid are fully symmetric.
a(2) = 2 fully symmetric recurrent sandpiles on an 2 X 2 grid are the all-2 and all-3 sandpiles.
Among A348566(4, 4) = 36 sandpiles with horizontal and vertical symmetry, only a(4) = 12 also have diagonal symmetries:
3333 1331 1331 3223 3223 3333 2222 0330 2332 2332 0330 2222
3333 3223 3333 2222 2332 3223 2222 3223 3223 3333 3333 2332
3333 3223 3333 2222 2332 3223 2222 3223 3223 3333 3333 2332
3333 1331 1331 3223 3223 3333 2222 0330 2332 2332 0330 2222
Showing 1-4 of 4 results.
Comments