A116469
Square array read by antidiagonals: T(m,n) = number of spanning trees in an m X n grid.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 56, 192, 56, 1, 1, 209, 2415, 2415, 209, 1, 1, 780, 30305, 100352, 30305, 780, 1, 1, 2911, 380160, 4140081, 4140081, 380160, 2911, 1, 1, 10864, 4768673, 170537640, 557568000, 170537640, 4768673, 10864, 1
Offset: 1
a(2,2) = 4, since we must have exactly 3 of the 4 possible connections: if we have all 4 there are multiple paths between points; if we have fewer some points will be isolated from others.
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 4, 15, 56, 209, 780, ...
1, 15, 192, 2415, 30305, 380160, ...
1, 56, 2415, 100352, 4140081, 170537640, ...
1, 209, 30305, 4140081, 557568000, 74795194705, ...
1, 780, 380160, 170537640, 74795194705, 32565539635200, ...
-
Digits:=200;
T:=(m,n)->round(Re(evalf(simplify(expand(
mul(mul( 4*sin(h*Pi/(2*m))^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1)))))); # crude Maple program from N. J. A. Sloane, May 27 2012
-
T[m_, n_] := Product[4 Sin[h Pi/(2 m)]^2 + 4 Sin[k Pi/(2 n)]^2, {h, m - 1}, {k, n - 1}]; Flatten[Table[FullSimplify[T[k, r - k]], {r, 2, 10}, {k, 1, r - 1}]] (* Ben Branman, Mar 10 2013 *)
-
T(n,m) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(m-1, 2, (4-x)/2)); \\ Michel Marcus, Apr 13 2020
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A116469(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A116469(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)]) # Seiichi Manyama, Apr 12 2020
A007726
Number of spanning trees of quarter Aztec diamonds of order n.
Original entry on oeis.org
1, 1, 4, 56, 2640, 411840, 210613312, 351102230528, 1901049105201408, 33349238079515381760, 1892086487183556298556416, 346728396311328694807284940800, 205021218459835103075295973360128000, 390870571052378289975757743555515137130496
Offset: 1
- Mihai Ciucu (ciucu(AT)math.gatech.edu), in preparation, 2001.
- Seiichi Manyama, Table of n, a(n) for n = 1..50
- Timothy Y. Chow, The Q-spectrum and spanning trees of tensor products of bipartite graphs, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3155-3161.
- R. Kenyon, J. Propp and D. Wilson, Trees and matchings, Electronic Journal of Combinatorics, 7(1):R25, 2000.
- D. E. Knuth, Aztec Diamonds, Checkerboard Graphs, and Spanning Trees, arXiv:math/9501234 [math.CO], 1995; J. Alg. Combinatorics 6 (1997), 253-257.
- R. P. Stanley, Spanning trees of Aztec diamonds, Discrete Math. 157 (1996), 375-388 (Problem 251).
- Index entries for sequences related to trees
-
Table[Product[Product[4 - 2*Cos[j*Pi/n] - 2*Cos[k*Pi/n], {j, 1, k-1}], {k, 2, n-1}], {n, 1, 15}] // Round (* Vaclav Kotesovec, Dec 30 2020 *)
Table[Sqrt[Resultant[ChebyshevU[n-1, x/2], ChebyshevU[n-1, (4-x)/2], x] / (n * 2^(n-1))], {n, 1, 15}] (* Vaclav Kotesovec, Dec 30 2020 *)
-
default(realprecision, 120);
{a(n) = round(prod(j=2, n-1, prod(i=1, j-1, 4*sin(i*Pi/(2*n))^2+4*sin(j*Pi/(2*n))^2)))} \\ Seiichi Manyama, Dec 29 2020
A127605
a(n) = 2^(2*n*n) * Product_{i=1..n} Product_{j=1..n} (sin(i*Pi/(2*n+1))^2 + sin(j*Pi/(2*n+1))^2).
Original entry on oeis.org
1, 6, 500, 463736, 4614756624, 485005220494432, 533978739649683515200, 6129678550595328659594928000, 731483813983605533022316212534132992, 905665520470954445892575061753881157482726912
Offset: 0
-
for n from 0 to 12 do a[n]:=2^(2*n*n)*product(product(sin(i*Pi/(2*n+1))^2+ sin(j*Pi/(2*n+1))^2,j=1..n),i=1..n) od: seq(round(evalf(a[n],300)),n=0..12);
-
Table[(2*n+1) * 2^(n*(2*n-1)) * Product[Product[Sin[i*Pi/(2*n + 1)]^2 + Sin[j*Pi/(2*n + 1)]^2, {i, 1, j-1}], {j, 2, n}]^2, {n, 0, 15}] // Round (* Vaclav Kotesovec, Dec 30 2020 *)
A300006
Matrices of the 2 X 2 sandpile group, with matrix [a,b;c,d] encoded as concat(a,b,c,d), leading 0 omitted.
Original entry on oeis.org
112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333, 1012, 1013, 1021, 1022, 1023, 1031, 1032, 1033, 1102, 1103, 1112, 1113, 1120, 1121, 1122, 1123, 1130, 1131
Offset: 1
a(1) = 0112 represents the matrix A = [0,1;1,2]. As illustration, add this to E2 = [2,2;2,2]: A + E2 = [2,3;3,4], and the 4 "topples": it gets 4 subtracted and both neighbors (the two 3's) get incremented by 1, thus: [2,4;4;0]. Now the two 4's topple, each one incrementing the 2 and the 0 by one: [4,0;0,2]. Once again the 4 topples: [0,1;1,2]. This is the result: A (+) E2 = A.
a(116) = 2222 represents E2 = [2,2;2,2], which is the only nonzero 2 X 2 matrix such that M (+) M = M. (Indeed, 2222 + 2222 = 4444 -> 2222, as each 4 topples to 0 and gets +1 from each of its 2 neighbors.) It is (by definition) the neutral element in S2 := { A in M_2(Z) | A (+) E2 = A }, and it turns out that there is an opposite or inverse A' for each A in S(2), such that A (+) A' = E2. (This would not be the case for the zero matrix.)
Cf.
A007341 (order of the sandpile group for (n-1) X (n-1) grid),
A300008 (inverse of a(n)),
A300007 (indices of the inverses),
A300009 (addition table of this group).
-
spa(A,B=0,C=0*A[,1],R=0*A[1,])={A+=B; while(B=A\4,A+=concat(B[,^1], C)+concat(C,B[,^-1])+concat(B[^1,],R)+concat(R,B[^-1,])-4*B); A} \\ sandpile addition; without 2nd arg only "topple"
S2=List(); forvec(v=vector(4,i,[2,5]), listput(S2,spa(Mat([v[1..2],v[3..4]]~)))); S2=Set(S2) \\ The 2 X 2 sandpile group as subset of 2 X 2 matrices with coefficients in [0..3], here determined by adding an arbitrary matrix 2 X 2 to the matrix E2 = [2,2;2,2]; equivalently one could select the 2 X 2 matrices invariant under sandpile-addition of E2: see also A007341.
A300006=apply( m2d=M->fromdigits(concat(Col(M~)~)), S2) \\ matrix-to-decimal encoding. Use transpose because PARI sorts matrices [a,b;c,d] as (a,c,b,d).
A080691
Number of spanning forests of the n X n grid graph.
Original entry on oeis.org
1, 15, 3102, 8790016, 341008617408, 181075508242067552, 1315927389374152034113856, 130877523274817580209987036404864, 178135975585132088643635627145305047963624, 3318089946193080260596185780557019330240985991363200, 845810281460839114896541390288164525407725177643901666416522016
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..15
- N. Calkin, C. Merino, S. Noble and M. Noy, Improved Bounds for the Number of Forests and Acyclic Orientations in the Square Lattice, The Electronic Journal of Combinatorics, Volume 10(1), 2003, #R4.
- A. Pönitz, Über eine Methode zur Konstruktion von Algorithmen für die Berechnung von Invarianten in endlichen ungerichteten Hypergraphen, PhD Thesis (2004) C.3.
- Peter Tittmann, More Results [Gives a(1)-a(14)]
- Eric Weisstein's World of Mathematics, Grid Graph
A307652
The number of grains of sand in the identity element for the sandpile group on an (n+1) X (n+1) square grid.
Original entry on oeis.org
8, 12, 40, 52, 72, 88, 136, 160, 216, 244, 320, 356, 408, 448, 544, 592, 704, 756, 888, 948, 1088, 1156, 1304, 1376, 1504, 1584, 1736, 1820, 1984, 2076, 2288, 2384, 2536, 2640, 2912, 3024, 3200, 3316, 3624, 3748, 3976, 4104, 4392, 4528, 4824, 4968, 5216, 5364, 5664, 5820, 6088, 6248, 6616
Offset: 1
a(1) = 2 X 2 grid.
Identity: | 2 2 |
| 2 2 | = 8 grains.
a(2) = 3 X 3 grid.
Identity: | 2 1 2 |
| 1 0 1 |
| 2 1 2 | = 12 grains.
a(3) = 4 X 4 grid.
Identity: | 2 3 3 2 |
| 3 2 2 3 |
| 3 2 2 3 |
| 2 3 3 2 | = 40 grains.
a(4) = 5 X 5 grid.
Identity: | 2 3 2 3 2 |
| 3 2 1 2 3 |
| 2 1 0 1 2 |
| 3 2 1 2 3 |
| 2 3 2 3 2 | = 52 grains.
- Scott R. Shannon, Table of n, a(n) for n = 1..500
- Yvan Le Borgne, Dominique Rossin, On the identity of the sandpile group. Discrete Mathematics, 256 (2002) 775-790.
- Luis David Garcia-Puente and Brady Haran, Sandpiles, Numberphile video, YouTube.com, Jan. 13, 2017.
- Alexander E. Holroyd et al., Chip-firing and Rotor-Routing on Directed Graphs. arXiv:0801.3306v4 [math.CO], 2013.
- Scott R. Shannon, Identity for the 50x50 grid. For this, and other images, black=0, yellow=1, blue=2, red=3 grains.
- Scott R. Shannon, Identity for the 51x51 grid. This shows the crossed line pattern through the center of the grid which is typical of grids with odd numbered side lengths.
- Scott R. Shannon, Identity for the 1000x1000 grid.
- Scott R. Shannon, Identity for the 4000x4000 grid. This contains 37246680 grains.
- Scott R. Shannon, Simplified Java code for finding the identity element and the sequence a(n).
- Wikipedia, Abelian Sandpile Model.
Cf.
A007341 (order of the sandpile group of the (n-1)X(n-1) grid graph).
A375817
In an n X n grid draw straight walls between cells, starting at a border, such that the resulting figure is connected and has only one-cell wide paths; a(n) is the number of solutions not reduced for symmetries.
Original entry on oeis.org
1, 4, 56, 1112, 25000, 607712, 15918280, 451371888, 13908978792, 466254401360, 16972978214456, 668532916285104, 28362769354991656, 1290007395847848160, 62619708755213093360, 3230982278203826268640, 176553522584025285715304, 10184062836771923067636528
Offset: 1
a(3) = 56. The A375770(3) = 10 distinct solutions with their multiplicities are:
._._._. ._._._. ._._._. ._._._. ._._._.
| | | | | | | | | | | | | ._|
| | | | | | | | | | | | | | | |
|_|_|_| |_|_|_| |_|_._| |_|_|_| |_|_|_|
(4) (8) (4) (2) (8)
._._._. ._._._. ._._._. ._._._. ._._._.
| | ._| | | | | ._| |_. ._| |_. | |
| | | | ._| | | ._| | | | ._|
|_|_|_| |_|_._| |_|_._| |_|_|_| |_|_._|
(8) (8) (8) (4) (2)
A071763
Number of spanning trees in n X n X n grid.
Original entry on oeis.org
1, 384, 8193540096000, 172685928902844729688524604506636288, 77746347057132811936046563068332100246216273086593103906734080000000000000
Offset: 1
Sharon Sela (sharonsela(AT)hotmail.com), Jun 04 2002
-
Table[2^(n^3 - 1)/n^3 Product[Piecewise[{{1, i == j == k == 0}}, 3 - Cos[Pi i/n] - Cos[Pi j/n] - Cos[Pi k/n]], {i, 0, n - 1}, {j, 0, n - 1}, {k, 0, n - 1}], {n, 12}] // Round
A080690
Number of acyclic orientations of n X n grid graph.
Original entry on oeis.org
1, 14, 2398, 5015972, 128091434266, 39931856138212664, 151966368274993474937668, 7059965159455454640307807067492, 4003910412343921295679925280332950062686, 27719972687144020161876951888422165049044889741764
Offset: 1
Andre Poenitz [André Pönitz], Peter Tittmann (poenitz(AT)htwm.de), Mar 03 2003
- N. Calkin, C. Merino, S. Noble and M. Noy, Improved Bounds for the Number of Forests and Acyclic Orientations in the Square Lattice, The Electronic Journal of Combinatorics, Volume 10(1), 2003, #R4.
- A. Pönitz, Über eine Methode zur Konstruktion von Algorithmen für die Berechnung von Invarianten in endlichen ungerichteten Hypergraphen, PhD Thesis (2004) C.3.
- Peter Tittmann, More Results [Gives a(1)-a(14)]
Showing 1-10 of 23 results.
Comments