cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A001353 a(n) = 4*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841, 214311567528244
Offset: 0

Views

Author

Keywords

Comments

3*a(n)^2 + 1 is a square. Moreover, 3*a(n)^2 + 1 = (2*a(n) - a(n-1))^2.
Consecutive terms give nonnegative solutions to x^2 - 4*x*y + y^2 = 1. - Max Alekseyev, Dec 12 2012
Values y solving the Pellian x^2 - 3*y^2 = 1; corresponding x values given by A001075(n). Moreover, we have a(n) = 2*a(n-1) + A001075(n-1). - Lekraj Beedassy, Jul 13 2006
Number of spanning trees in 2 X n grid: by examining what happens at the right-hand end we see that a(n) = 3*a(n-1) + 2*a(n-2) + 2*a(n-3) + ... + 2*a(1) + 1, where the final 1 corresponds to the tree ==...=| !. Solving this we get a(n) = 4*a(n-1) - a(n-2).
Complexity of 2 X n grid.
A016064 also describes triangles whose sides are consecutive integers and in which an inscribed circle has an integer radius. A001353 is exactly and precisely mapped to the integer radii of such inscribed circles, i.e., for each term of A016064, the corresponding term of A001353 gives the radius of the inscribed circle. - Harvey P. Dale, Dec 28 2000
n such that 3*n^2 = floor(sqrt(3)*n*ceiling(sqrt(3)*n)). - Benoit Cloitre, May 10 2003
For n>0, ratios a(n+1)/a(n) may be obtained as convergents of the continued fraction expansion of 2+sqrt(3): either as successive convergents of [4;-4] or as odd convergents of [3;1, 2]. - Lekraj Beedassy, Sep 19 2003
Ways of packing a 3 X (2*n-1) rectangle with dominoes, after attaching an extra square to the end of one of the sides of length 3. With reference to A001835, therefore: a(n) = a(n-1) + A001835(n-1) and A001835(n) = 3*A001835(n-1) + 2*a(n-1). - Joshua Zucker and the Castilleja School Math Club, Oct 28 2003
a(n+1) is a Chebyshev transform of 4^n, where the sequence with g.f. G(x) is sent to the sequence with g.f. (1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 25 2004
This sequence is prime-free, because a(2n) = a(n) * (a(n+1)-a(n-1)) and a(2n+1) = a(n+1)^2 - a(n)^2 = (a(n+1)+a(n)) * (a(n+1)-a(n)). - Jianing Song, Jul 06 2019
Numbers such that there is an m with t(n+m) = 3*t(m), where t(n) are the triangular numbers A000217. For instance, t(35) = 3*t(20) = 630, so 35 - 20 = 15 is in the sequence. - Floor van Lamoen, Oct 13 2005
a(n) = number of distinct matrix products in (A + B + C + D)^n where commutator [A,B] = 0 but neither A nor B commutes with C or D. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
For n > 1, middle side (or long leg) of primitive Pythagorean triangles having an angle nearing Pi/3 with larger values of sides. [Complete triple (X, Y, Z), X < Y < Z, is given by X = A120892(n), Y = a(n), Z = A120893(n), with recurrence relations X(i+1) = 2*{X(i) - (-1)^i} + a(i); Z(i+1) = 2*{Z(i) + a(i)} - (-1)^i.] - Lekraj Beedassy, Jul 13 2006
From Dennis P. Walsh, Oct 04 2006: (Start)
Number of 2 X n simple rectangular mazes. A simple rectangular m X n maze is a graph G with vertex set {0, 1, ..., m} X {0, 1, ..., n} that satisfies the following two properties: (i) G consists of two orthogonal trees; (ii) one tree has a path that sequentially connects (0,0),(0,1), ..., (0,n), (1,n), ...,(m-1,n) and the other tree has a path that sequentially connects (1,0), (2,0), ..., (m,0), (m,1), ..., (m,n). For example, a(2) = 4 because there are four 2 X 2 simple rectangular mazes:
| | | | | | | | |
| | | | | || | |
(End)
[1, 4, 15, 56, 209, ...] is the Hankel transform of [1, 1, 5, 26, 139, 758, ...](see A005573). - Philippe Deléham, Apr 14 2007
The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - Clark Kimberling, Aug 27 2008
From Gary W. Adamson, Jun 21 2009: (Start)
A001353 and A001835 = bisection of continued fraction [1, 2, 1, 2, 1, 2, ...], i.e., of [1, 3, 4, 11, 15, 41, ...].
For n>0, a(n) equals the determinant of an (n-1) X (n-1) tridiagonal matrix with ones in the super and subdiagonals and (4, 4, 4, ...) as the main diagonal. [Corrected by Johannes Boot, Sep 04 2011]
A001835 and A001353 = right and next to right borders of triangle A125077. (End)
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 4's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
2a(n) is the number of n-color compositions of 2n consisting of only even parts; see Guo in references. - Brian Hopkins, Jul 19 2011
Pisano period lengths: 1, 2, 6, 4, 3, 6, 8, 4, 18, 6, 10, 12, 12, 8, 6, 8, 18, 18, 5, 12, ... - R. J. Mathar, Aug 10 2012
From Michel Lagneau, Jul 08 2014: (Start)
a(n) is defined also by the recurrence a(1)=1; for n>1, a(n+1) = 2*a(n) + sqrt(3*a(n)^2 + 1) where a(n) is an integer for every n. This sequence is generalizable by the sequence b(n,m) of parameter m with the initial condition b(1,m) = 1, and for n > 1 b(n+1,m) = m*b(n,m) + sqrt((m^2 - 1)*b(n,m)^2 + 1) for m = 2, 3, 4, ... where b(n,m) is an integer for every n.
The first corresponding sequences are
b(n,2) = a(n) = A001353(n);
b(n,3) = A001109(n);
b(n,4) = A001090(n);
b(n,5) = A004189(n);
b(n,6) = A004191(n);
b(n,7) = A007655(n);
b(n,8) = A077412(n);
b(n,9) = A049660(n);
b(n,10) = A075843(n);
b(n,11) = A077421(n);
....................
We obtain a general sequence of polynomials {b(n,x)} = {1, 2*x, 4*x^2 - 1, 8*x^3 - 4*x, 16*x^4 - 12*x^2 + 1, 32*x^5 - 32*x^3 + 6*x, ...} with x = m where each b(n,x) is a Gegenbauer polynomial defined by the recurrence b(n,x)- 2*x*b(n-1,x) + b(n-2,x) = 0, the same relation as the Chebyshev recurrence, but with the initial conditions b(x,0) = 1 and b(x,1) = 2*x instead b(x,0) = 1 and b(x,1) = x for the Chebyshev polynomials. (End)
If a(n) denotes the n-th term of the above sequence and we construct a triangle whose sides are a(n) - 1, a(n) + 1 and sqrt(3a(n)^2 + 1), then, for every n the measure of one of the angles of the triangle so constructed will always be 120 degrees. This result of ours was published in Mathematics Spectrum (2012/2013), Vol. 45, No. 3, pp. 126-128. - K. S. Bhanu and Dr. M. N. Deshpande, Professor (Retd), Department of Statistics, Institute of Science, Nagpur (India).
For n >= 1, a(n) equals the number of 01-avoiding words of length n - 1 on alphabet {0, 1, 2, 3}. - Milan Janjic, Jan 25 2015
For n > 0, 10*a(n) is the number of vertices and roots on level n of the {4, 5} mosaic (see L. Németh Table 1 p. 6). - Michel Marcus, Oct 30 2015
(2 + sqrt(3))^n = A001075(n) + a(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 16 2018
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 12 2019
The Cholesky decomposition A = C C* for tridiagonal A with A[i,i] = 4 and A[i+1,i] = A[i,i+1] = -1, as it arises in the discretized 2D Laplace operator (Poisson equation...), has nonzero elements C[i,i] = sqrt(a(i+1)/a(i)) = -1/C[i+1,i], i = 1, 2, 3, ... - M. F. Hasler, Mar 12 2021
The triples (a(n-1), 2a(n), a(n+1)), n=2,3,..., are exactly the triples (a,b,c) of positive integers a < b < c in arithmetic progression such that a*b+1, b*c+1, and c*a+1 are perfect squares. - Bernd Mulansky, Jul 10 2021
From Greg Dresden and Linyun Sheng, Jul 01 2025: (Start)
a(n) is the number of ways to tile this strip of length n,
| | | | | | |\
||__||__||__|_\,
where the last cell is a right triangle, with three types of tiles: 1 X 1 squares, 1 X 1 small right triangles, and large right triangles (with large side length 2) formed by joining two of those small right triangles along a short leg. As an example, here is one of the a(7)=2911 ways to tile the 1 X 7 strip with these kinds of tiles:
|\ /|\ | /| | / \
|\/_|\|/|__|/_\,
(End)

Examples

			For example, when n = 3:
  ****
  .***
  .***
can be packed with dominoes in 4 different ways: 3 in which the top row is tiled with two horizontal dominoes and 1 in which the top row has two vertical and one horizontal domino, as shown below, so a(2) = 4.
  ---- ---- ---- ||--
  .||| .--| .|-- .|||
  .||| .--| .|-- .|||
G.f. = x + 4*x^2 + 15*x^3 + 56*x^4 + 209*x^5 + 780*x^6 + 2911*x^7 + 10864*x^8 + ...
		

References

  • Bastida, Julio R., Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 163.
  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A bisection of A002530.
Cf. A125077.
A row of A116469.
Chebyshev sequence U(n, m): A000027 (m=1), this sequence (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Feb 16 2018
    
  • Haskell
    a001353 n = a001353_list !! n
    a001353_list =
       0 : 1 : zipWith (-) (map (4 *) $ tail a001353_list) a001353_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 06 2019
    
  • Maple
    A001353 := proc(n) option remember; if n <= 1 then n else 4*A001353(n-1)-A001353(n-2); fi; end;
    A001353:=z/(1-4*z+z**2); # Simon Plouffe in his 1992 dissertation.
    seq( simplify(ChebyshevU(n-1, 2)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    a[n_] := (MatrixPower[{{1, 2}, {1, 3}}, n].{{1}, {1}})[[2, 1]]; Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 13 2005 *)
    Table[GegenbauerC[n-1, 1, 2], {n, 0, 30}] (* Zerinvary Lajos, Jul 14 2009 *)
    Table[-((I Sin[n ArcCos[2]])/Sqrt[3]), {n, 0, 30}] // FunctionExpand (* Eric W. Weisstein, Jul 16 2011 *)
    Table[Sinh[n ArcCosh[2]]/Sqrt[3], {n, 0, 30}] // FunctionExpand (* Eric W. Weisstein, Jul 16 2011 *)
    Table[ChebyshevU[n-1, 2], {n, 0, 30}] (* Eric W. Weisstein, Jul 16 2011 *)
    a[0]:=0; a[1]:=1; a[n_]:= a[n]= 4a[n-1] - a[n-2]; Table[a[n], {n, 0, 30}] (* Alonso del Arte, Jul 19 2011 *)
    LinearRecurrence[{4, -1}, {0, 1}, 30] (* Sture Sjöstedt, Dec 06 2011 *)
    Round@Table[Fibonacci[2n, Sqrt[2]]/Sqrt[2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    M = [ 1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=0,30,print1(([1,0,0]*M^i)[2],",")) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
    
  • PARI
    {a(n) = real( (2 + quadgen(12))^n / quadgen(12) )}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 2)}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    concat(0, Vec(x/(1-4*x+x^2) + O(x^30))) \\ Altug Alkan, Oct 30 2015
    
  • Python
    a001353 = [0, 1]
    for n in range(30): a001353.append(4*a001353[-1] - a001353[-2])
    print(a001353)  # Gennady Eremin, Feb 05 2022
  • Sage
    [lucas_number1(n,4,1) for n in range(30)] # Zerinvary Lajos, Apr 22 2009
    
  • Sage
    [chebyshev_U(n-1,2) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: x/(1-4*x+x^2).
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(2*sqrt(3)).
a(n) = sqrt((A001075(n)^2 - 1)/3).
a(n) = 2*a(n-1) + sqrt(3*a(n-1)^2 + 1). - Lekraj Beedassy, Feb 18 2002
Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 06 2002
Binomial transform of A002605.
E.g.f.: exp(2*x)*sinh(sqrt(3)*x)/sqrt(3).
a(n) = S(n-1, 4) = U(n-1, 2); S(-1, x) := 0, Chebyshev's polynomials of the second kind A049310.
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*4^(n - 2*k). - Paul Barry, Oct 25 2004
a(n) = Sum_{k=0..n-1} binomial(n+k,2*k+1)*2^k. - Paul Barry, Nov 30 2004
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3), n>=3. - Lekraj Beedassy, Jul 13 2006
a(n) = -A106707(n). - R. J. Mathar, Jul 07 2006
M^n * [1,0] = [A001075(n), A001353(n)], where M = the 2 X 2 matrix [2,3; 1,2]; e.g., a(4) = 56 since M^4 * [1,0] = [97, 56] = [A001075(4), A001353(4)]. - Gary W. Adamson, Dec 27 2006
From Michael Somos, Sep 19 2008: (Start)
Sequence satisfies 1 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v.
a(n) = -a(-n) for all integer n. (End)
Rational recurrence: a(n) = (17*a(n-1)*a(n-2) - 4*(a(n-1)^2 + a(n-2)^2))/a(n-3) for n > 3. - Jaume Oliver Lafont, Dec 05 2009
If p[i] = Fibonacci(2i) and if A is the Hessenberg matrix of order n defined by A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j + 1), and A[i,j] = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, May 08 2010
From Eric W. Weisstein, Jul 16 2011: (Start)
a(n) = C_{n-1}^{(1)}(2), where C_n^{(m)}(x) is the Gegenbauer polynomial.
a(n) = -i*sin(n*arccos(2))/sqrt(3).
a(n) = sinh(n*arccosh(2))/sqrt(3). (End)
a(n) = b such that Integral_{x=0..Pi/2} (sin(n*x))/(2-cos(x)) dx = c + b*log(2). - Francesco Daddi, Aug 02 2011
a(n) = sqrt(A098301(n)) = sqrt([A055793 / 3]), base 3 analog of A031150. - M. F. Hasler, Jan 16 2012
a(n+1) = Sum_{k=0..n} A101950(n,k)*3^k. - Philippe Deléham, Feb 10 2012
1, 4, 15, 56, 209, ... = INVERT(INVERT(1, 2, 3, 4, 5, ...)). - David Callan, Oct 13 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(3).
Product_{n >= 2} (1 - 1/a(n)) = 1/4*(1 + sqrt(3)). (End)
a(n+1) = (A001834(n) + A001835(n))/2. a(n+1) + a(n) = A001834(n). a(n+1) - a(n) = A001835(n). - Richard R. Forberg, Sep 04 2013
a(n) = -(-i)^(n+1)*Fibonacci(n, 4*i), i = sqrt(-1). - G. C. Greubel, Jun 06 2019
a(n)^2 - a(m)^2 = a(n+m) * a(n-m), a(n+2)*a(n-2) = 16*a(n+1)*a(n-1) - 15*a(n)^2, a(n+3)*a(n-2) = 15*a(n+2)*a(n-1) - 14*a(n+1)*a(n) for all integer n, m. - Michael Somos, Dec 12 2019
a(n) = 2^n*Sum_{k >= n} binomial(2*k,2*n-1)*(1/3)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n) = Sum_{k > 0} (-1)^((k-1)/2)*binomial(2*n, n+k)*(k|12), where (k|12) is the Kronecker symbol. - Greg Dresden, Oct 11 2022
Sum_{k=0..n} a(k) = (a(n+1) - a(n) - 1)/2. - Prabha Sivaramannair, Sep 22 2023
a(2n+1) = A001835(n+1) * A001834(n). - M. Farrokhi D. G., Oct 15 2023
Sum_{n>=1} arctan(1/(4*a(n)^2)) = Pi/12 (A019679) (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024
From Peter Bala, May 21 2025: (Start)
Product_{n >= 1} (1 + 1/a(n))^2 = 2*(2 + sqrt(3)) (telescoping product: (1 + 1/a(2*n-1))^2 * (1 + 1/a(2*n-2))^2 = (4 + 2*A251963(n)/A005246(2*n)^2)/(4 + 2*A251963(n-1)/A005246(2*n-2)^2) ).
Product_{n >= 2} (1 - 1/a(n))^2 = (1/8)*(2 + sqrt(3)).
Product_{n >= 1} ((a(2*n) + 1)/(a(2*n) - 1))^2 = 3 (telescoping product: ((a(2*n) + 1)/(a(2*n) - 1))^2 = (3 - 2/A001835(n+1)^2)/(3 - 2/A001835(n)^2) ).
Product_{n >= 2} ((a(2*n-1) + 1)/(a(2*n-1) - 1))^2 = 4/3.
The o.g.f. A(x) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0. The o.g.f. for A007655 equals -A(sqrt(x))*A(-sqrt(x)). (End)

A007341 Number of spanning trees in n X n grid.

Original entry on oeis.org

1, 4, 192, 100352, 557568000, 32565539635200, 19872369301840986112, 126231322912498539682594816, 8326627661691818545121844900397056, 5694319004079097795957215725765328371712000, 40325021721404118513276859513497679249183623593590784, 2954540993952788006228764987084443226815814190099484786032640000
Offset: 1

Views

Author

Keywords

Comments

Kreweras calls this the complexity of the n X n grid.
a(n) is the number of perfect mazes made from a grid of n X n cells. - Leroy Quet, Sep 08 2007
Also number of domino tilings of the (2n-1) X (2n-1) square with upper left corner removed. For n=2 the 4 domino tilings of the 3 X 3 square with upper left corner removed are:
. ._. . ._. . ._. . ._.
.|__| .|__| .| | | .|___|
| |_| | | | | | ||| |_| |
||__| |||_| ||__| |_|_| - Alois P. Heinz, Apr 15 2011
Indeed, more is true. Let L denote the (2*n - 1) X (2*n - 1) square lattice graph with vertices (i,j), 1 <= i,j <= 2*n-1. Call a vertex (i,j) odd if both coordinates i and j are odd. Then there is a bijection between the set of spanning trees on the square n X n grid and the set of domino tilings of L with an odd boundary point removed. See Tzeng and Wu, 2002. This is a divisibility sequence, i.e., if n divides m then a(n) divides a(m). - Peter Bala, Apr 29 2014
Also, a(n) is the order of the sandpile group of the (n-1)X(n-1) grid graph. This is because the n X n grid is dual to (n-1)X(n-1) grid + sink vertex, and the latter is related to the sandpiles by the burning bijection. See Járai, Sec. 4.1, or Redig, Sec. 2.2. In M. F. Hasler's comment below, index n refers to the size of the grid underlying the sandpile. - Andrey Zabolotskiy, Mar 27 2018
From M. F. Hasler, Mar 07 2018: (Start)
The sandpile addition (+) of two n X n matrices is defined as the ordinary addition, followed by the topple-process in which each element larger than 3 is decreased by 4 and each of its von Neumann neighbors is increased by 1.
For any n, there is a neutral element e_n such that the set S(n) = { A in M_n({0..3}) | A (+) e_n = A } of matrices invariant under sandpile addition of e_n, forms a group, i.e., each element A in S(n) has an inverse A' in S(n) such that A (+) A' = e_n. (For n > 1, e_n cannot be the zero matrix O_n, because for this choice S(n) would include, e.g., the all 1's matrix 1_n which cannot have an inverse X such that 1_n (+) X = O_n. The element e_n is the unique nonzero matrix such that e_n (+) e_n = e_n.)
The present sequence lists the size of the abelian group (S(n), (+), e_n). See the example section for the e_n. The elements of S(2) are listed as A300006 and their inverses are listed as A300007. (End)

Examples

			From _M. F. Hasler_, Mar 07 2018: (Start)
For n = 1, there exists only one 0 X 0 matrix, e_0 = []; it is the neutral element of the singleton group S(0) = {[]}.
For n = 2, the sandpile addition is isomorphic to addition in Z/4Z, the neutral element is e_1 = [0] and we get the group S(1) isomorphic to (Z/4Z, +).
For n = 3, one finds that e_2 = [2,2;2,2] is the neutral element of the sandpile addition restricted to S(2), having 192 elements, listed in A300006.
For n = 4, one finds that e_3 = [2,1,2;1,0,1;2,1,2] is the neutral element of the sandpile addition restricted to S(3), having 100352 elements.
For n = 5, the neutral element is e_4 = [2,3,3,2; 3,2,2,3; 3,2,2,3; 2,3,3,2]. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A116469.
Cf. A080690 (number of acyclic orientations), A080691 (number of spanning forests), A349718 (number of spanning trees, reduced for symmetry).

Programs

  • Maple
    a:= n-> round(evalf(2^(n^2-1) /n^2 *mul(mul(`if`(j<>0 or k<>0, 2 -cos(Pi*j/n) -cos(Pi*k/n), 1), k=0..n-1), j=0..n-1), 15 +n*(n+1)/2)): seq(a(n), n=1..20);  # Alois P. Heinz, Apr 15 2011
    # uses expression as a resultant
    seq(resultant(simplify(ChebyshevU(n-1, x/2)), simplify(ChebyshevU(n-1, (4-x)/2)), x), n = 1 .. 24); # Peter Bala, Apr 29 2014
  • Mathematica
    Table[2^((n-1)^2) Product[(2 - Cos[Pi i/n] - Cos[Pi j/n]), {i, 1, n-1}, {j, 1, n-1}], {n, 12}] // Round
    Table[Resultant[ChebyshevU[n-1, x/2], ChebyshevU[n-1, (4-x)/2], x], {n, 1, 12}] (* Vaclav Kotesovec, Apr 15 2020 *)
  • PARI
    {a(n) = polresultant( polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2) )}; /* Michael Somos, Aug 12 2017 */

Formula

a(n) = 2^(n^2-1) / n^2 * product_{n1=0..n-1, n2=0..n-1, n1 and n2 not both 0} (2 - cos(Pi*n1/n) - cos(Pi*n2/n) ). - Sharon Sela (sharonsela(AT)hotmail.com), Jun 04 2002
Equivalently, a(n) = Resultant( U(n-1,x/2), U(n-1,(4-x)/2) ), where U(n,x) is a Chebyshev polynomial of the second kind. - Peter Bala, Apr 29 2014
From Vaclav Kotesovec, Dec 30 2020: (Start)
a(n) ~ 2^(1/4) * Gamma(1/4) * exp(4*G*n^2/Pi) / (Pi^(3/4)*sqrt(n)*(1+sqrt(2))^(2*n)), where G is Catalan's constant A006752.
a(n) = n * 2^(n-1) * A007726(n)^2. (End)

Extensions

More terms and better description from Roberto E. Martinez II, Jan 07 2002

A287151 Array read by antidiagonals: T(m,n) = number of nonzero m X n binary arrays with all 1's connected.

Original entry on oeis.org

1, 3, 3, 6, 13, 6, 10, 40, 40, 10, 15, 108, 218, 108, 15, 21, 275, 1126, 1126, 275, 21, 28, 681, 5726, 11506, 5726, 681, 28, 36, 1664, 28992, 116166, 116166, 28992, 1664, 36, 45, 4040, 146642, 1168586, 2301877, 1168586, 146642, 4040, 45, 55, 9779, 741556, 11749134, 45280509, 45280509, 11749134, 741556, 9779, 55
Offset: 1

Views

Author

Andrew Howroyd, May 20 2017

Keywords

Comments

Also the number of connected induced (non-null) subgraphs of the grid graph P_m X P_n.
All rows (or columns) are linear recurrences with constant coefficients and the order of the recurrence of row m is at most 1 + A378941(m+1). At least for columns up to 7, this bound gives the actual order of the recurrence. The second differences of any column give those arrays that touch the top and bottom boundaries and have a recurrence order of 2 less since a finite state machine to enumerate these does not require states for empty rows. The number of states required is also considered in A140662 but does not take symmetry into account. - Andrew Howroyd, Dec 18 2024

Examples

			Table starts:
====================================================================
m\n|  1    2      3        4         5           6             7
---|----------------------------------------------------------------
1  |  1    3      6       10        15          21            28 ...
2  |  3   13     40      108       275         681          1664 ...
3  |  6   40    218     1126      5726       28992        146642 ...
4  | 10  108   1126    11506    116166     1168586      11749134 ...
5  | 15  275   5726   116166   2301877    45280509     889477656 ...
6  | 21  681  28992  1168586  45280509  1732082741   66037462454 ...
7  | 28 1664 146642 11749134 889477656 66037462454 4872949974666 ...
...
		

Crossrefs

Rows 2..5 are A059020, A059021, A059524, A378940.
Main diagonal is A059525.

A212796 Square array read by antidiagonals: T(m,n) = number of spanning trees in C_m X C_n.

Original entry on oeis.org

1, 2, 2, 3, 32, 3, 4, 294, 294, 4, 5, 2304, 11664, 2304, 5, 6, 16810, 367500, 367500, 16810, 6, 7, 117600, 10609215, 42467328, 10609215, 117600, 7, 8, 799694, 292626432, 4381392020, 4381392020, 292626432, 799694, 8, 9, 5326848, 7839321861, 428652000000, 1562500000000, 428652000000, 7839321861, 5326848, 9
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Examples

			Array begins:
  1,    2,      3,        4,          5,            6               7, ...
  2,   32,    294,     2304,      16810,       117600,         799694, ...
  3,  294,  11664,   367500,   10609215,    292626432,     7839321861, ...
  4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, ...
  ...
		

Crossrefs

Rows and columns 1..10 give A000027, A212797, A212798, A212799, A358810, A358811, A358812, A358813, A358814, A358815.
Diagonal gives A212800.

Programs

  • Maple
    Digits:=200;
    T:=(m,n)->round(Re(evalf(simplify(expand(
    m*n*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1))))));
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))} \\ Seiichi Manyama, Jan 13 2021

Formula

T(m,n) = m*n*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1).

A006238 Complexity of (or spanning trees in) a 3 X n grid.

Original entry on oeis.org

1, 15, 192, 2415, 30305, 380160, 4768673, 59817135, 750331584, 9411975375, 118061508289, 1480934568960, 18576479568193, 233018797965135, 2922930580320960, 36664523428884015, 459910778352898337, 5769007865476035840, 72365017995700730081, 907729015392142395375
Offset: 1

Views

Author

Keywords

Comments

a(n) is a divisibility sequence - m divides n implies that a(m) divides a(n). - Paul Raff, Mar 06 2009
Also number of domino tilings of the 5 X (2n-1) rectangle with upper left corner removed. For n=2 the 15 domino tilings of the 5 X 3 rectangle with upper left corner removed are:
. ._. . ._. . ._. . ._. . ._. . ._. . ._. . ._.
.|__| .| | | .|___| .|__| .|__| .| | | .| | | .|__|
| |_| | ||| | | | | | |_| | |_| | ||| | ||| | | | |
||__| ||__| |||_| || | | ||___| || | | ||___| |||_|
| |_| | |_| | |_| | ||| | | | | | ||| | | | | | | | |
||__| ||__| ||__| ||__| |||_| ||__| |||_| |||_|
. ._. . ._. . ._. . ._. . ._. . ._. . ._.
.|__| .|__| .|__| .|__| .|__| .|__| ._| | |
|_| | | | | | |_| | |_| | |_| | | |_| | |||
|_|_| |||_| | | || |__|_| |_|_| ||__| ||__|
|_| | |_| | ||| | | | | | | |_| |_| | |_| |
|_|_| |_|_| |_|_| |||_| ||__| |_|_| |_|_|
- Alois P. Heinz, Apr 14 2011

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 3 of A116469. A100047.

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|15|-32|15>>^n. <<1, 0, 1, 15>>)[2, 1]: seq(a(n), n=1..30);  # Alois P. Heinz, Apr 14 2011
  • Mathematica
    LinearRecurrence[{15,-32,15,-1},{1,15,192,2415},30] (* Harvey P. Dale, May 14 2013 *)

Formula

a(n) = 15a(n-1) - 32a(n-2) + 15a(n-3) - a(n-4), n>4.
G.f.: -x(x^2-1)/(x^4-15x^3+32x^2-15x+1). - Paul Raff, Mar 06 2009
a(n) = A001906(n)*A004254(n). - R. J. Mathar, Jun 03 2009
From Peter Bala, Mar 25 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (15 + sqrt(105))/4 and beta = (15 - sqrt(105))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2X2 matrix T(n, M), where M is the 2X2 matrix [0, -15/2; 1, 15/2].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = (A003775(n+1)+A003775(n-2))/24-(A003775(n)+A003775(n-1))/3, n>1. - Sergey Perepechko, Apr 26 2016

A003696 Number of spanning trees in P_4 X P_n.

Original entry on oeis.org

1, 56, 2415, 100352, 4140081, 170537640, 7022359583, 289143013376, 11905151192865, 490179860527896, 20182531537581071, 830989874753525760, 34214941811800329425, 1408756312731277540744
Offset: 1

Views

Author

Keywords

Comments

Also number of domino tilings of the 7 X (2n-1) rectangle with upper left corner removed. - Alois P. Heinz, Apr 14 2011
A linear divisibility sequence of order 8; a(n) divides a(m) whenever n divides m. It is the product of a 2nd-order Lucas sequence and a 4th-order linear divisibility sequence. - Peter Bala, Apr 27 2014

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

A row of A116469. - N. J. A. Sloane, May 27 2012
Bisection of A189004. - Alois P. Heinz, Sep 20 2012

Programs

  • Maple
    seq(resultant(simplify(ChebyshevU(3, (x-4)*(1/2))), simplify(ChebyshevU(n-1, (1/2)*x)), x), n = 1 .. 14); # Peter Bala, Apr 27 2014
  • Mathematica
    LinearRecurrence[{56, -672, 2632, -4094, 2632, -672, 56, -1}, {1, 56, 2415, 100352, 4140081, 170537640, 7022359583, 289143013376}, 20] (* Jean-François Alcover, Feb 28 2020 *)
  • PARI
    {a(n) = polresultant((x-4)*(x^2-8*x+14), polchebyshev(n-1, 2, x/2))}; /* Michael Somos, Oct 31 2022 */

Formula

a(1) = 1,
a(2) = 56,
a(3) = 2415,
a(4) = 100352,
a(5) = 4140081,
a(6) = 170537640,
a(7) = 7022359583,
a(8) = 289143013376 and
a(n) = 56a(n-1) - 672a(n-2) + 2632a(n-3) - 4094a(n-4) + 2632a(n-5) - 672a(n-6) + 56a(n-7) - a(n-8).
G.f.: x(x^6-49x^4+112x^3-49x^2+1) / (x^8-56x^7 +672x^6-2632x^5 +4094x^4 -2632x^3 +672x^2-56x+1). - Paul Raff, Mar 06 2009
From Peter Bala, Apr 27 2014: (Start)
a(n) = Resultant( U(3,(x-4)/2),U(n-1,x/2) ), where U(n,x) denotes the Chebyshev polynomial of the second kind. The polynomial U(3,(x-4)/2) = x^3 - 12*x^2 + 46*x - 56 (see A159764) has zeros z_1 = 4, z_2 = 4 + sqrt(2) and z_3 = 4 - sqrt(2). Hence a(n) = U(n-1,2)*U(n-1,1/2*(4 + sqrt(2)))*U(n-1,1/2*(4 - sqrt(2))).
a(n) = A001353(n)*A161158(n-1). (End)
a(n) = (9/3968)*(A028469(n+3)-A028469(n-4)) - (497/3968)*(A028469(n+2)-A028469(n-3)) + (5687/3968)*(A028469(n+1)-A028469(n-2)) - (19983/3968)*(A028469(n)-A028469(n-1)), n>3. - Sergey Perepechko, May 02 2016
a(n) = -a(-n) for all n in Z. - Michael Somos, Oct 31 2022

Extensions

Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009

A360202 Array read by antidiagonals: T(m,n) is the number of (non-null) induced trees in the grid graph P_m X P_n.

Original entry on oeis.org

1, 3, 3, 6, 12, 6, 10, 33, 33, 10, 15, 78, 138, 78, 15, 21, 171, 533, 533, 171, 21, 28, 360, 2003, 3568, 2003, 360, 28, 36, 741, 7453, 23686, 23686, 7453, 741, 36, 45, 1506, 27643, 156614, 277606, 156614, 27643, 1506, 45, 55, 3039, 102432, 1034875, 3234373, 3234373, 1034875, 102432, 3039, 55
Offset: 1

Views

Author

Andrew Howroyd, Feb 22 2023

Keywords

Examples

			Array begins:
=============================================================
m\n|  1   2     3       4        5          6           7 ...
---+---------------------------------------------------------
1  |  1   3     6      10       15         21          28 ...
2  |  3  12    33      78      171        360         741 ...
3  |  6  33   138     533     2003       7453       27643 ...
4  | 10  78   533    3568    23686     156614     1034875 ...
5  | 15 171  2003   23686   277606    3234373    37643572 ...
6  | 21 360  7453  156614  3234373   66136452  1349087217 ...
7  | 28 741 27643 1034875 37643572 1349087217 48136454388 ...
     ...
		

Crossrefs

Main diagonal is A360203.
Rows 1..2 are A000217, 3*A125128.
Cf. A287151 (connected induced subgraphs), A116469 (spanning trees), A360196 (induced cycles), A360199 (induced paths), A360918 (maximum induced trees).

Formula

T(m,n) = T(n,m).

A003779 Number of spanning trees in P_5 x P_n.

Original entry on oeis.org

1, 209, 30305, 4140081, 557568000, 74795194705, 10021992194369, 1342421467113969, 179796299139278305, 24080189412483072000, 3225041354570508955681, 431926215138756947267505, 57847355494807961811035009, 7747424602888405489208931601
Offset: 1

Views

Author

Keywords

Comments

Also number of domino tilings of the 9 X (2n-1) rectangle with upper left corner removed. - Alois P. Heinz, Apr 14 2011
A linear divisibility sequence of order 16; a(n) divides a(m) whenever n divides m. It is the product of two 4th-order linear divisibility sequences A143699 and A241606. - Peter Bala, Apr 26 2014

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

A row of A116469. Bisection of A189005.

Programs

  • Maple
    seq(resultant(simplify(ChebyshevU(4,(x-4)*(1/2))), simplify(ChebyshevU(n-1,(1/2)*x)), x), n = 1 .. 14); # Peter Bala, Apr 27 2014
  • Mathematica
    a[n_] := 256^(n-1)*Product[Sin[(h*Pi)/10]^2 + Sin[(k*Pi)/(2*n)]^2, {h, 1, 4}, {k, 1, n-1}]; Table[a[n]//Round, {n, 1, 14}] (* Jean-François Alcover, Apr 28 2014 *)
  • PARI
    Vec(-x*(x^14-1440*x^12+26752*x^11-185889*x^10+574750*x^9-708928*x^8+708928*x^6-574750*x^5+185889*x^4-26752*x^3+1440*x^2-1)/(x^16-209*x^15+11936*x^14-274208*x^13+3112032*x^12-19456019*x^11+70651107*x^10-152325888*x^9+196664896*x^8-152325888*x^7+70651107*x^6-19456019*x^5+3112032*x^4-274208*x^3+11936*x^2-209*x+1)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2015

Formula

a(n) = 209 a(n-1)
- 11936 a(n-2)
+ 274208 a(n-3)
- 3112032 a(n-4)
+ 19456019 a(n-5)
- 70651107 a(n-6)
+ 152325888 a(n-7)
- 196664896 a(n-8)
+ 152325888 a(n-9)
- 70651107 a(n-10)
+ 19456019 a(n-11)
- 3112032 a(n-12)
+ 274208 a(n-13)
- 11936 a(n-14)
+ 209 a(n-15)
- a(n-16)
[Modified by Paul Raff, Oct 30 2009]
G.f.: -x(x^14-1440x^12+26752x^11 -185889x^10+574750x^9-708928x^8 +708928x^6-574750x^5+185889x^4 -26752x^3+1440x^2-1) / (x^16-209x^15 +11936x^14 -274208x^13+3112032x^12-19456019x^11 +70651107x^10 -152325888x^9 +196664896x^8 -152325888x^7+70651107x^6 -19456019x^5 +3112032x^4-274208x^3+11936x^2-209x+1).
From Peter Bala, Apr 26 2014: (Start)
a(n) = Resultant(U(4,(x-4)/2),U(n-1,x/2)), where U(n,x) denotes the Chebyshev polynomial of the second kind. The polynomial U(4,(x-4)/2) = 209 - 232*x + 93*x^2 - 16*x^3 + x^4 (see A159764) has zeros z_1 = (9 + sqrt(5))/2, z_2 = (9 - sqrt(5))/2, z_3 = (7 + sqrt(5))/2 and z_4 = (7 - sqrt(5))/2. Thus a(n) = U(n-1,1/2*z_1)*U(n-1,1/2*z_2)*U(n-1,1/2*z_3)*U(n-1,1/2*z_4).
a(n) = A143699(n)*A241606(n). (End)

Extensions

Recurrence from Faase's web page added by N. J. A. Sloane, Feb 03 2009

A139400 Number of spanning trees in the graph P_6 x P_n.

Original entry on oeis.org

1, 780, 380160, 170537640, 74795194705, 32565539635200, 14143261515284447, 6136973985625588560, 2662079368040434932480, 1154617875754582889149500, 500769437567956298239402223, 217185579535490113365186969600
Offset: 1

Views

Author

Paul Raff, Jun 09 2008; corrected recurrence Feb 03 2009

Keywords

Comments

Also number of domino tilings of the 11 X (2n-1) rectangle with upper left corner removed. - Alois P. Heinz, Apr 14 2011
A linear divisibility sequence of order 32; a(n) divides a(m) whenever n divides m. It is the product of four linear divisibility sequences - three Lucas sequences of order 2 and one linear divisibility sequence of order 4. - Peter Bala, Apr 27 2014

Examples

			a(2) = 780, as can be verified from the seventh entry of A001353, which corresponds to the number of spanning trees of the same graph.
		

Crossrefs

Row m=6 of A116469.
Bisection of A210724 (odd part). A001353, A001906, A004254, A159764, A161498.

Programs

  • Maple
    seq(resultant(simplify(ChebyshevU(5, (x-4)*(1/2))), simplify(ChebyshevU(n-1, (1/2)*x)), x), n = 1 .. 12); # Peter Bala, Apr 27 2014
  • Mathematica
    Array[Resultant[ChebyshevU[5, x/2-2], ChebyshevU[#-1, x/2], x] &, 20] (* Paolo Xausa, Mar 17 2024, after Peter Bala *)

Formula

a(n) = 780 a(n-1) - 194881 a(n-2) + 22377420 a(n-3) - 1419219792 a(n-4) + 55284715980 a(n-5) - 1410775106597 a(n-6) + 24574215822780 a(n-7) - 300429297446885 a(n-8) + 2629946465331120 a(n-9) - 16741727755133760 a(n-10)
+ 78475174345180080 a(n-11) - 273689714665707178 a(n-12) + 716370537293731320 a(n-13) - 1417056251105102122 a(n-14) + 2129255507292156360 a(n-15) - 2437932520099475424 a(n-16) + 2129255507292156360 a(n-17)
- 1417056251105102122 a(n-18) + 716370537293731320 a(n-19) - 273689714665707178 a(n-20) + 78475174345180080 a(n-21) - 16741727755133760 a(n-22) + 2629946465331120 a(n-23) - 300429297446885 a(n-24) + 24574215822780 a(n-25) - 1410775106597 a(n-26) + 55284715980 a(n-27) - 1419219792 a(n-28) + 22377420 a(n-29) - 194881 a(n-30) + 780 a(n-31) - a(n-32).
From Peter Bala, Apr 27 2014: (Start)
a(n) = Resultant( U(5,(x-4)/2), U(n-1,x/2) ), where U(n,x) denotes the Chebyshev polynomial of the second kind. The polynomial U(5,(x-4)/2) = x^5 - 20*x^4 + 156*x^3 - 592*x^2 + 1091*x - 780 (see A159764) has zeros z_1 = 3, z_2 = 4, z_3 = 5, z_4 = 4 + sqrt(3) and z_5 = 4 - sqrt(3). Hence a(n) = U(n-1,3/2)*U(n-1,2)*U(n-1,5/2)*U(n-1,1/2*(4 + sqrt(3)))*U(n-1,1/2*(4 - sqrt(3))).
a(n) = A001906(n)*A001353(n)*A004254(n)*A161498(n). (End)

A359993 Array read by antidiagonals: T(m,n) is the number of connected spanning subgraphs in the grid graph P_m X P_n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 23, 23, 1, 1, 105, 431, 105, 1, 1, 479, 7857, 7857, 479, 1, 1, 2185, 142625, 555195, 142625, 2185, 1, 1, 9967, 2587279, 38757695, 38757695, 2587279, 9967, 1, 1, 45465, 46929343, 2698167665, 10286937043, 2698167665, 46929343, 45465, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2023

Keywords

Comments

Also T(m,n) except when m = n = 0 is the number of connected edge covers in the m X n grid graph.

Examples

			Table starts:
=================================================================
m\n| 1    2       3          4             5                6
---+-------------------------------------------------------------
1  | 1    1       1          1             1                1 ...
2  | 1    5      23        105           479             2185 ...
3  | 1   23     431       7857        142625          2587279 ...
4  | 1  105    7857     555195      38757695       2698167665 ...
5  | 1  479  142625   38757695   10286937043    2711895924889 ...
6  | 1 2185 2587279 2698167665 2711895924889 2692324030864335 ...
   ...
		

Crossrefs

Rows 1..4 are A000012, A107839(n-1), A158453, A359991.
Main diagonal is A359992.
Cf. A116469 (spanning trees), A287151 (connected induced subgraphs), A286912 (edge covers), A359990 (edge cuts), A360194 (spanning forests).

Formula

T(m,n) = T(n,m).
Showing 1-10 of 25 results. Next