cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: K. S. Bhanu

K. S. Bhanu's wiki page.

K. S. Bhanu has authored 4 sequences.

A151794 a(1)=2, a(2)=4, a(3)=6; a(n+3) = a(n+2)+ 2*a(n), n>=1.

Original entry on oeis.org

2, 4, 6, 14, 26, 54, 106, 214, 426, 854, 1706, 3414, 6826, 13654, 27306, 54614, 109226, 218454, 436906, 873814, 1747626, 3495254, 6990506, 13981014, 27962026, 55924054, 111848106, 223696214, 447392426, 894784854, 1789569706, 3579139414, 7158278826, 14316557654
Offset: 1

Author

K. S. Bhanu (bhanu_105(AT)yahoo.com), Jun 21 2009

Keywords

Comments

Consider the following coin tossing experiment. Let n >= 1 be a predetermined integer. We toss an unbiased coin sequentially. For each outcome, we score two points for a head (H) and one point for a tail (T). The coin is tossed until the total score reaches n or jumps from n-1 to n+1. The results of the tosses are written in a linear array. Then the probability of non-occurrence of double heads (HH) is given by p(n) = a(n) / 2^n, n>=1.

References

  • Bhanu K. S, Deshpande M. N. & Cholkar C. P. (2006): Coin tossing -Some Surprising Results, International Journal of Mathematical Education In Science and Technology, Vol.37, No.1, pp.115-119.

Programs

  • Mathematica
    Join[{2},LinearRecurrence[{1,2},{4,6},40]] (* Harvey P. Dale, Oct 19 2012 *)
  • PARI
    Vec(2*x*(-x+x^2-1)/((1+x)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jun 12 2015

Formula

G.f.: 2*x*(-x+x^2-1)/((1+x)*(2*x-1)).
a(n) = A084214(n), n>1.
a(n) = A168648(n-2), n>2.
a(n) = 2*A048573(n-2), n>1.
a(n) = (4*(-1)^n+5*2^n)/6 for n>1. - Colin Barker, Jun 12 2015

A103201 a(1) = 11, a(2) = 19, a(3) = 89, a(4) = 151; for n >= 5, a(n) = sqrt(a(n-4)^2 + 60*a(n-2)^2 + 4*a(n-2)*sqrt(210 + 15*a(n-4)^2)).

Original entry on oeis.org

11, 19, 89, 151, 701, 1189, 5519, 9361, 43451, 73699, 342089, 580231, 2693261, 4568149, 21203999, 35964961, 166938731, 283151539, 1314305849, 2229247351, 10347508061, 17550827269, 81465758639, 138177370801, 641378561051
Offset: 1

Author

K. S. Bhanu and M. N. Deshpande, Mar 24 2005

Keywords

References

  • K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.

Crossrefs

This is the sequence b(n) defined in A103200. Bhanu and Deshpande ask for a proof that the terms of the sequence are always integers.
Cf. A103200.

Programs

  • GAP
    a:=[11,19,89,151];; for n in [5..30] do a[n]:=8*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4) )); // G. C. Greubel, May 24 2019
    
  • Maple
    b[1]:=11:b[2]:=19:b[3]:=89:b[4]:=151: for n from 5 to 28 do b[n]:=sqrt(b[n-4]^2+60*b[n-2]^2+4*b[n-2]*sqrt(210+15*b[n-4]^2)) od:seq(b[n],n=1..28); # Emeric Deutsch, Apr 13 2005
  • Mathematica
    LinearRecurrence[{0, 8, 0, -1}, {11, 19, 89, 151}, 30] (* Georg Fischer, May 24 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4)) \\ G. C. Greubel, May 24 2019
    
  • Sage
    a=(x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4)).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 24 2019
    

Formula

G.f.: x*(11 + 19*x + x^2 - x^3)/(1 - 8*x^2 + x^4). - Georg Fischer, May 24 2019

Extensions

More terms from Pierre CAMI and Emeric Deutsch, Apr 13 2005

A103200 a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5.

Original entry on oeis.org

1, 2, 11, 19, 90, 153, 712, 1208, 5609, 9514, 44163, 74907, 347698, 589745, 2737424, 4643056, 21551697, 36554706, 169676155, 287794595, 1335857546, 2265802057, 10517184216, 17838621864, 82801616185, 140443172858, 651895745267, 1105706761003, 5132364345954
Offset: 1

Author

K. S. Bhanu and M. N. Deshpande, Mar 24 2005

Keywords

Comments

The original version of this question was as follows: Let a(1) = 1, a(2) = 2, a(3) = 11, a(4) = 19; for n = 1..4 let b(n) = sqrt(60 a(n)^2 + 60 a(n) + 1); for n >= 5 let a(n) = a(n-4) + b(n-2), b(n) = sqrt(60 a(n)^2 + 60 a(n) +1). Bhanu and Deshpande ask for a proof that a(n) and b(n) are always integers. The b(n) sequence is A103201.
This sequence is also the interleaving of two sequences c and d that can be extended backwards: c(0) = c(1) = 0, c(n) = sqrt(60 c(n-1)^2 + 60 c(n-1) +1) + c(n-2) giving 0,0,1,11,90,712,5609,... d(0) = 1, d(1) = 0, d(n) = sqrt(60 d(n-1)^2 + 60 d(n-1) +1) + d(n-2) giving 1,0,2,19,153,1208,9514,... and interleaved: 0,1,0,0,1,2,11,19,90,153,712,1208,5609,9514,... lim_{n->infinity} a(n)/a(n-2) = 1/(4 - sqrt(15)), (1/(4-sqrt(15)))^n approaches an integer as n -> infinity. - Gerald McGarvey, Mar 29 2005

References

  • K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.

Crossrefs

Cf. A103201, A177187 (first differences).

Programs

  • Magma
    I:=[1,2,11,19,90]; [n le 5 select I[n] else Self(n-1)+8*Self(n-2)-8*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Sep 28 2011
  • Maple
    a[1]:=1: a[2]:=2:a[3]:=11: a[4]:=19: for n from 5 to 31 do a[n]:=a[n-4]+sqrt(60*a[n-2]^2+60*a[n-2]+1) od:seq(a[n],n=1..31); # Emeric Deutsch, Apr 13 2005
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==2,a[3]==11,a[4]==19,a[n]==a[n-4]+ Sqrt[60a[n-2]^2+60a[n-2]+1]},a[n],{n,40}] (* or *) LinearRecurrence[ {1,8,-8,-1,1},{1,2,11,19,90},40] (* Harvey P. Dale, Sep 27 2011 *)
    CoefficientList[Series[-x*(1 + x + x^2)/((x - 1)*(x^4 - 8*x^2 + 1)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *)

Formula

Comments from Pierre CAMI and Gerald McGarvey, Apr 20 2005: (Start)
Sequence satisfies a(0)=0, a(1)=1, a(2)=2, a(3)=11; for n > 3, a(n) = 8*a(n-2) - a(n-4) + 3.
G.f.: -x*(1 + x + x^2) / ( (x - 1)*(x^4 - 8*x^2 + 1) ). Note that the 3 = the sum of the coefficients in the numerator of the g.f., 8 appears in the denominator of the g.f. and 8 = 2*3 + 2. Similar relationships hold for other series defined as nonnegative n such that m*n^2 + m*n + 1 is a square, here m=60. Cf. A001652, A001570, A049629, A105038, A105040, A104240, A077288, A105036, A105037. (End)
a(2n) = (A105426(n)-1)/2, a(2n+1) = (A001090(n+2) - 5*A001090(n+1) - 1)/2. - Ralf Stephan, May 18 2007
a(1)=1, a(2)=2, a(3)=11, a(4)=19, a(5)=90, a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Sep 27 2011

Extensions

More terms from Pierre CAMI and Emeric Deutsch, Apr 13 2005

A092521 a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3), with a(1) = 1, a(2) = 8, a(3) = 56.

Original entry on oeis.org

1, 8, 56, 385, 2640, 18096, 124033, 850136, 5826920, 39938305, 273741216, 1876250208, 12860010241, 88143821480, 604146740120, 4140883359361, 28382036775408, 194533374068496, 1333351581704065, 9138927697859960
Offset: 1

Author

K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, Apr 06 2004

Keywords

Comments

a(n) such that 9*(T(a(n)-1) + T(a(n+1)-1)) = 7*(T(a(n) + a(n+1) - 1)), where T(i) denotes the i-th triangular number.
Partial sums of Chebyshev sequence S(n,7) = U(n,7/2) = A004187(n+1). - Wolfdieter Lang, Aug 31 2004
From Klaus Purath, Aug 06 2025: (Start)
Numbers k such that both 3*k + 1 and 15*k + 1 are perfect squares. Also the sum of two consecutive terms is a square.
Take any recurrence (r) of the form (3,-1) with initial value 0 followed by an arbitrary positive integer i. Then the product of two consecutive terms of r divided by 3*i^2 gives the current sequence. (End)

Examples

			G.f. = x + 8*x^2 + 56*x^3 + 385*x^4 + 2640*x^5 + 18096*x^6 + ... - _Michael Somos_, Jan 23 2025
		

Crossrefs

Cf. A212336 for more sequences with g.f. of the type 1/(1 - k*x + k*x^2 - x^3).

Programs

  • Magma
    A092521:= func< n | (Lucas(4*n+2) -3)/15 >; // G. C. Greubel, Jun 12 2025
    
  • Mathematica
    a[1] = 1; a[2] = 8; a[3] = 56; a[n_] := a[n] = 8 a[n - 1] - 8 a[n - 2] + a[n - 3]; Table[ a[n], {n, 20}] (* Robert G. Wilson v, Apr 08 2004 *)
    Table[(LucasL[4n+2]-3)/15, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
    LinearRecurrence[{8,-8,1},{1,8,56},30] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    Vec(x/((1-x)*(1-7*x+x^2)) + O(x^100)) \\ Altug Alkan, Oct 29 2015
    
  • SageMath
    def A092521(n): return (lucas_number2(4*n+2,1,-1) -3)//15 # G. C. Greubel, Jun 12 2025

Formula

G.f.: x/(1 - 8*x + 8*x^2 - x^3) = x/((1 - x)*(1 - 7*x + x^2)).
a(n) = 7*a(n-1) - a(n-2) + 1, n>=2, a(0):=0, a(1)=1.
a(n) = (S(n, 7)-S(n-1, 7) -1)/5, n>=1, with S(n, 7) = U(n, 7/2) = A004187(n+1).
a(n) = A058038(n)/3.
a(n) = (1/3)*Sum_{k=0..n} Fibonacci(4*k). - Gary Detlefs, Dec 07 2010
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jan 23 2025
From G. C. Greubel, Jun 12 2025: (Start)
a(n) = A081079(n)/15.
E.g.f.: (1/15)*( exp(7*x/2)*( 3*cosh(p*x) + sqrt(5)*sinh(p*x) ) - 3*exp(x) ), where p = 3*sqrt(5)/2. (End)

Extensions

Edited and extended by Robert G. Wilson v, Apr 08 2004