cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A053141 a(0)=0, a(1)=2 then a(n) = a(n-2) + 2*sqrt(8*a(n-1)^2 + 8*a(n-1) + 1).

Original entry on oeis.org

0, 2, 14, 84, 492, 2870, 16730, 97512, 568344, 3312554, 19306982, 112529340, 655869060, 3822685022, 22280241074, 129858761424, 756872327472, 4411375203410, 25711378892990, 149856898154532, 873430010034204, 5090723162050694, 29670908962269962, 172934730611569080
Offset: 0

Views

Author

Keywords

Comments

Solution to b(b+1) = 2a(a+1) in natural numbers including 0; a = a(n), b = b(n) = A001652(n).
The solution of a special case of a binomial problem of H. Finner and K. Strassburger (strass(AT)godot.dfi.uni-duesseldorf.de).
Also the indices of triangular numbers that are half other triangular numbers [a of T(a) such that 2T(a)=T(b)]. The T(a)'s are in A075528, the T(b)'s are in A029549 and the b's are in A001652. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 30 2002
Sequences A053141 (this entry), A016278, A077259, A077288 and A077398 are part of an infinite series of sequences. Each depends upon the polynomial p(n) = 4k*n^2 + 4k*n + 1, when 4k is not a perfect square. Equivalently, they each depend on the equation k*t(x)=t(z) where t(n) is the triangular number formula n(n+1)/2. The dependencies are these: they are the sequences of positive integers n such that p(n) is a perfect square and there exists a positive integer m such that k*t(n)=t(m). A053141 is for k=2, A016278 is for k=3, A077259 is for k=5. - Robert Phillips (bobanne(AT)bellsouth.net), Oct 11 2007, Nov 27 2007
Jason Holt observes that a pair drawn from a drawer with A053141(n)+1 red socks and A001652(n) - A053141(n) blue socks will as likely as not be matching reds: (A053141+1)*A053141/((A001652+1)*A001652) = 1/2, n>0. - Bill Gosper, Feb 07 2010
The values x(n)=A001652(n), y(n)=A046090(n) and z(n)=A001653(n) form a nearly isosceles Pythagorean triple since y(n)=x(n)+1 and x(n)^2 + y(n)^2 = z(n)^2; e.g., for n=2, 20^2 + 21^2 = 29^2. In a similar fashion, if we define b(n)=A011900(n) and c(n)=A001652(n), a(n), b(n) and c(n) form a nearly isosceles anti-Pythagorean triple since b(n)=a(n)+1 and a(n)^2 + b(n)^2 = c(n)^2 + c(n) + 1; i.e., the value a(n)^2 + b(n)^2 lies almost exactly between two perfect squares; e.g., 2^2 + 3^2 = 13 = 4^2 - 3 = 3^2 + 4; 14^2 + 15^2 = 421 = 21^2 - 20 = 20^2 + 21. - Charlie Marion, Jun 12 2009
Behera & Panda call these the balancers and A001109 are the balancing numbers. - Michel Marcus, Nov 07 2017

Crossrefs

Programs

  • Haskell
    a053141 n = a053141_list !! n
    a053141_list = 0 : 2 : map (+ 2)
       (zipWith (-) (map (* 6) (tail a053141_list)) a053141_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(2*x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A053141 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,2]) ;
        else
            6*procname(n-1)-procname(n-2)+2 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]]*2 (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    a[n_] := Floor[1/8*(2+Sqrt[2])*(3+2*Sqrt[2])^n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 28 2013 *)
    Table[(Fibonacci[2n + 1, 2] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
  • PARI
    concat(0,Vec(2/(1-x)/(1-6*x+x^2)+O(x^30))) \\ Charles R Greathouse IV, May 14 2012
    
  • PARI
    {x=1+sqrt(2); y=1-sqrt(2); P(n) = (x^n - y^n)/(x-y)};
    a(n) = round((P(2*n+1) - 1)/2);
    for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jul 15 2018
    
  • Sage
    [(lucas_number1(2*n+1, 2, -1)-1)/2 for n in range(30)] # G. C. Greubel, Apr 27 2020

Formula

a(n) = (A001653(n)-1)/2 = 2*A053142(n) = A011900(n)-1. [Corrected by Pontus von Brömssen, Sep 11 2024]
a(n) = 6*a(n-1) - a(n-2) + 2, a(0) = 0, a(1) = 2.
G.f.: 2*x/((1-x)*(1-6*x+x^2)).
Let c(n) = A001109(n). Then a(n+1) = a(n)+2*c(n+1), a(0)=0. This gives a generating function (same as existing g.f.) leading to a closed form: a(n) = (1/8)*(-4+(2+sqrt(2))*(3+2*sqrt(2))^n + (2-sqrt(2))*(3-2*sqrt(2))^n). - Bruce Corrigan (scentman(AT)myfamily.com), Oct 30 2002
a(n) = 2*Sum_{k = 0..n} A001109(k). - Mario Catalani (mario.catalani(AT)unito.it), Mar 22 2003
For n>=1, a(n) = 2*Sum_{k=0..n-1} (n-k)*A001653(k). - Charlie Marion, Jul 01 2003
For n and j >= 1, A001109(j+1)*A001652(n) - A001109(j)*A001652(n-1) + a(j) = A001652(n+j). - Charlie Marion, Jul 07 2003
From Antonio Alberto Olivares, Jan 13 2004: (Start)
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
a(n) = -(1/2) - (1-sqrt(2))/(4*sqrt(2))*(3-2*sqrt(2))^n + (1+sqrt(2))/(4*sqrt(2))*(3+2*sqrt(2))^n. (End)
a(n) = sqrt(2)*cosh((2*n+1)*log(1+sqrt(2)))/4 - 1/2 = (sqrt(1+4*A029549)-1)/2. - Bill Gosper, Feb 07 2010 [typo corrected by Vaclav Kotesovec, Feb 05 2016]
a(n+1) + A055997(n+1) = A001541(n+1) + A001109(n+1). - Creighton Dement, Sep 16 2004
From Charlie Marion, Oct 18 2004: (Start)
For n>k, a(n-k-1) = A001541(n)*A001653(k)-A011900(n+k); e.g., 2 = 99*5 - 493.
For n<=k, a(k-n) = A001541(n)*A001653(k) - A011900(n+k); e.g., 2 = 3*29 - 85 + 2. (End)
a(n) = A084068(n)*A084068(n+1). - Kenneth J Ramsey, Aug 16 2007
Let G(n,m) = (2*m+1)*a(n)+ m and H(n,m) = (2*m+1)*b(n)+m where b(n) is from the sequence A001652 and let T(a) = a*(a+1)/2. Then T(G(n,m)) + T(m) = 2*T(H(n,m)). - Kenneth J Ramsey, Aug 16 2007
Let S(n) equal the average of two adjacent terms of G(n,m) as defined immediately above and B(n) be one half the difference of the same adjacent terms. Then for T(i) = triangular number i*(i+1)/2, T(S(n)) - T(m) = B(n)^2 (setting m = 0 gives the square triangular numbers). - Kenneth J Ramsey, Aug 16 2007
a(n) = A001108(n+1) - A001109(n+1). - Dylan Hamilton, Nov 25 2010
a(n) = (a(n-1)*(a(n-1) - 2))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
a(n) = (ChebyshevU(n, 3) - ChebyshevU(n-1, 3) - 1)/2 = (Pell(2*n+1) - 1)/2. - G. C. Greubel, Apr 27 2020
E.g.f.: (exp(3*x)*(2*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - 2*exp(x))/4. - Stefano Spezia, Mar 16 2024
a(n) = A000194(A029549(n)) = A002024(A075528(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Name corrected by Zak Seidov, Apr 11 2011

A105038 Nonnegative n such that 6*n^2 + 6*n + 1 is a square.

Original entry on oeis.org

0, 4, 44, 440, 4360, 43164, 427284, 4229680, 41869520, 414465524, 4102785724, 40613391720, 402031131480, 3979697923084, 39394948099364, 389969783070560, 3860302882606240, 38213059042991844, 378270287547312204, 3744489816430130200, 37066627876753989800
Offset: 0

Views

Author

Gerald McGarvey, Apr 03 2005

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4x/(1-11x+11x^2-x^3),{x,0,30}],x] (* or *) LinearRecurrence[{11,-11,1},{0,4,44},30] (* Harvey P. Dale, Sep 29 2013 *)
  • PARI
    for(n=0,427284,if(issquare(6*n*(n+1)+1),print1(n,",")))
    
  • PARI
    Vec(4*x/(1-11*x+11*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2012

Formula

G.f.: 4*x/(1-11*x+11*x^2-x^3).
a(0)=0, a(1)=4, a(2)=44, a(n)=11*a(n-1)-11*a(n-2)+a(n-3). - Harvey P. Dale, Sep 29 2013
a(n) = (-6-(5-2*sqrt(6))^n*(-3+sqrt(6))+(3+sqrt(6))*(5+2*sqrt(6))^n)/12. - Colin Barker, Mar 05 2016
a(n) = (A072256(n+1) - 1)/2.

Extensions

More terms from Vladeta Jovovic, Apr 05 2005
Incorrect conjectures deleted by N. J. A. Sloane, Nov 24 2010

A105045 a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=12; for n > 4, a(n) = 8*a(n-2) - a(n-4) - 3.

Original entry on oeis.org

0, 1, 2, 3, 12, 20, 91, 154, 713, 1209, 5610, 9515, 44164, 74908, 347699, 589746, 2737425, 4643057, 21551698, 36554707, 169676156, 287794596, 1335857547, 2265802058, 10517184217, 17838621865, 82801616186, 140443172859, 651895745268, 1105706761004, 5132364345955
Offset: 0

Views

Author

Gerald McGarvey, Apr 03 2005

Keywords

Comments

It appears that this sequence gives all nonnegative m such that 60*m^2 - 60*m + 1 is a square and that for n > 3, a(n+1) = A103200(n) + 1.
From Paul Weisenhorn, Jun 30 2010: (Start)
Place b(n) red and a(n) blue balls in an urn, then draw 6 balls without replacement.
This gives binomial(b(n), 6) = binomial(b(n), 4) * binomial(a(n), 2), where b(n) = A179123(n). (End)

Examples

			For n=3, a(3)=3; b(3)=14; binomial(14,6)=3003; binomial(14,4)*binomial(3,2) = 1001*3 = 3003. - _Paul Weisenhorn_, Jun 30 2010
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x-7*x^2+x^3+x^4)/((1-x)*(1-8*x^2+x^4)) )); // G. C. Greubel, Mar 14 2023
    
  • Maple
    n:=1: for m from 1 to 2000 do w:=sqrt(1+60*m*(m-1)):
    if (w=floor(w)) then a(n)=m: b(n)=(9+w)/2: inc(n): end if: end do # Paul Weisenhorn, Jun 30 2010
  • Mathematica
    Join[{0},RecurrenceTable[{a[1]==1,a[2]==2,a[3]==3,a[4]==12,a[n] == 8a[n-2]-a[n-4]-3},a,{n,30}]] (* or *) LinearRecurrence[{1,8,-8,-1, 1}, {0,1,2,3,12,20}, 30] (* Harvey P. Dale, Nov 10 2011 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A105045
        if (n<6): return (0,1,2,3,12,20)[n]
        else: return a(n-1) +8*a(n-2) -8*a(n-3) -a(n-4) +a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Mar 14 2023

Formula

a(n) = 8*a(n-2) - a(n-4) - 3, for n > 4.
From Paul Weisenhorn, Jun 30 2010: (Start)
Let r=sqrt(15), then
a(n) = ((15+r)*(4+r)^((n-1)/2) + (15-r)*(4-r)^((n-1)/2) + 30)/60 when n is odd, and
a(n) = ((45+11*r)*(4+r)^((n-2)/2) + (45-11*r)*(4-r)^((n-2)/2) + 30)/60 when n is even. (End)
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5), a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=12, a(5)=20. - Harvey P. Dale, Nov 10 2011
G.f.: x*(1 +x -7*x^2 +x^3 +x^4)/((1-x)*(1-8*x^2+x^4)). - Colin Barker, Jan 01 2013

Extensions

More terms from Colin Barker, Jan 01 2013

A103201 a(1) = 11, a(2) = 19, a(3) = 89, a(4) = 151; for n >= 5, a(n) = sqrt(a(n-4)^2 + 60*a(n-2)^2 + 4*a(n-2)*sqrt(210 + 15*a(n-4)^2)).

Original entry on oeis.org

11, 19, 89, 151, 701, 1189, 5519, 9361, 43451, 73699, 342089, 580231, 2693261, 4568149, 21203999, 35964961, 166938731, 283151539, 1314305849, 2229247351, 10347508061, 17550827269, 81465758639, 138177370801, 641378561051
Offset: 1

Views

Author

K. S. Bhanu and M. N. Deshpande, Mar 24 2005

Keywords

References

  • K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.

Crossrefs

This is the sequence b(n) defined in A103200. Bhanu and Deshpande ask for a proof that the terms of the sequence are always integers.
Cf. A103200.

Programs

  • GAP
    a:=[11,19,89,151];; for n in [5..30] do a[n]:=8*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4) )); // G. C. Greubel, May 24 2019
    
  • Maple
    b[1]:=11:b[2]:=19:b[3]:=89:b[4]:=151: for n from 5 to 28 do b[n]:=sqrt(b[n-4]^2+60*b[n-2]^2+4*b[n-2]*sqrt(210+15*b[n-4]^2)) od:seq(b[n],n=1..28); # Emeric Deutsch, Apr 13 2005
  • Mathematica
    LinearRecurrence[{0, 8, 0, -1}, {11, 19, 89, 151}, 30] (* Georg Fischer, May 24 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4)) \\ G. C. Greubel, May 24 2019
    
  • Sage
    a=(x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4)).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 24 2019
    

Formula

G.f.: x*(11 + 19*x + x^2 - x^3)/(1 - 8*x^2 + x^4). - Georg Fischer, May 24 2019

Extensions

More terms from Pierre CAMI and Emeric Deutsch, Apr 13 2005

A105063 a(1)=0, a(2)=0, a(3)=8, a(4)=24, a(n) = 32 + 66*a(n-2) - a(n-4) for n > 4.

Original entry on oeis.org

0, 0, 8, 24, 560, 1616, 36984, 106664, 2440416, 7038240, 161030504, 464417208, 10625572880, 30644497520, 701126779608, 2022072419144, 46263741881280, 133426135166016, 3052705837384904, 8804102848537944, 201432321525522416
Offset: 1

Views

Author

Pierre CAMI, Apr 05 2005

Keywords

Comments

This sequence has the property 17*a(n)*(a(n) + 1) + 1 is a square.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( 8*x^3*(1+x)^2/((1-x)*(1-66*x^2+x^4)) )); // G. C. Greubel, Mar 13 2023
    
  • Mathematica
    LinearRecurrence[{1,66,-66,-1,1}, {0,0,8,24,560}, 40] (* G. C. Greubel, Mar 13 2023 *)
  • SageMath
    @CachedFunction
    def a(n):
        if (n<6): return (0,0,0,8,24,560)[n]
        else: return a(n-1) +66*a(n-2) -66*a(n-3) -a(n-4) +a(n-5)
    [a(n) for n in range(1,41)] # G. C. Greubel, Mar 13 2023

Formula

From R. J. Mathar, Nov 13 2009: (Start)
a(n) = a(n-1) +66*a(n-2) -66*a(n-3) -a(n-4) +a(n-5).
G.f.: 8*x^3*(1+x)^2/((1-x)*(1+8*x-x^2)*(1-8*x-x^2)). (End)
a(n) = (1/4)*(-32*[n=0] - 2 + i^n*((23 + 11*(-1)^n)*ChebyshevU(n, 4*I) - i*(187 + 89*(-1)^n)*ChebyshevU(n-1, 4*I))). - G. C. Greubel, Mar 13 2023

Extensions

More terms from R. J. Mathar, Nov 13 2009

A103737 Define a(1)=0, a(2)=0, a(3)=3, a(4)=7 such that from i=1 to 4: 30*a(i)^2 + 30*a(i) + 1 = j(i)^2, j(1)=1, j(2)=1, j(3)=19, j(4)=41 Then a(n) = a(n-4) + 4*sqrt(30*(a(n-2)^2) + 30*a(n-2) + 1).

Original entry on oeis.org

0, 0, 3, 7, 76, 164, 1679, 3611, 36872, 79288, 809515, 1740735, 17772468, 38216892, 390184791, 839030899, 8566292944, 18420462896, 188068259987, 404411152823, 4128935426780, 8878624899220, 90648511129183, 194925336630027, 1990138309415256, 4279478780961384, 43692394296006459
Offset: 1

Views

Author

Pierre CAMI, Mar 27 2005

Keywords

Comments

By construction and recurrence, 30*a(n)^2 + 30*a(n) + 1 = j(n)^2.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(3*x^2+4*x+3)/((1-x)*(x^4-22*x^2+1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    Rest[CoefficientList[Series[x^3*(3*x^2+4*x+3)/((1-x)*(x^4-22*x^2+1)), {x, 0, 50}], x]] (* G. C. Greubel, Jul 15 2018 *)
    LinearRecurrence[{1,22,-22,-1,1},{0,0,3,7,76},40] (* Harvey P. Dale, Mar 05 2025 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(x^3*(3*x^2+4*x+3)/((1-x)*(x^4-22*x^2+1)))) \\ G. C. Greubel, Jul 15 2018
    

Formula

G.f.: x^3*(3*x^2+4*x+3)/((1-x)*(x^4-22*x^2+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009

Extensions

Terms a(19) onward added by G. C. Greubel, Jul 15 2018

A103625 a(n) = 3 + 7*a(n-2) + sqrt(1 + 48*a(n-2) + 48*a(n-2)^2), with a(1) = 0, a(2) = 0, a(3) = 2.

Original entry on oeis.org

0, 0, 2, 4, 34, 62, 480, 870, 6692, 12124, 93214, 168872, 1298310, 2352090, 18083132, 32760394, 251865544, 456293432, 3508034490, 6355347660, 48860617322, 88518573814, 680540608024, 1232904685742, 9478707895020, 17172147026580, 132021369922262, 239177153686384
Offset: 1

Views

Author

Pierre CAMI, Mar 29 2005

Keywords

Comments

Define j(n) = sqrt(48*a(n)^2 + 48*a(n) + 1), then j(n) is prime for n=3, 4, 5, 6, 7, 25, 28, 32, 35, 48, 65, 66, 88, 96, 113, 119, 151, 155, 182, 220, 231, 316, 488, 531, 599, 722, 1049, 1176, ...
For n > 1, first member of the Diophantine pair (m,k) that satisfies 12*(m^2 + m) = k^2 + k; a(n)=m. - Herbert Kociemba, May 12 2008
Former name: Define a(1)=0, a(2)=0, a(3)=2, a(4)=4, a(5)=34, a(6)=62, a(7)=480, a(8)=870 such that from i=1 to 8: 48*a(i)^2 + 48*a(i) + 1 = j(i)^2 with j(1)=1, j(2)=1, j(3)=17, j(4)=31, j(5)=239, j(6)=433, j(7)=3329, j(8)=6031. Then a(n) = a(n-8) + 28*sqrt(48*(a(n-4)^2) + 48*a(n-4) + 1). - G. C. Greubel, Mar 22 2024

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!(2*(x^2+x+1)/(1-x-14*x^2+14*x^3+x^4-x^5))); // G. C. Greubel, Jul 15 2018
    
  • Mathematica
    a[1]=0; a[2]=0; a[3]=2; a[n_]:=a[n]= 3+7a[n-2]+Sqrt[1+48a[n-2]+48a[n-2]^2]; Table[a[n],{n,1,20}] (* Herbert Kociemba, May 12 2008 *)
    Rest@CoefficientList[Series[2*x^3*(1+x+x^2)/(1-x-14*x^2+14*x^3+x^4-x^5), {x,0,30}], x] (* G. C. Greubel, Jul 15 2018 *)
    LinearRecurrence[{1,14,-14,-1,1},{0,0,2,4,34},30] (* Harvey P. Dale, Jun 04 2021 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(2*x^3*(1+x+x^2)/(1-x-14*x^2+14*x^3 + x^4-x^5))) \\ G. C. Greubel, Jul 15 2018
    
  • SageMath
    @CachedFunction
    def b(n): return chebyshev_U(n, -2) # A125905
    def A103625(n): return (1/8)*(-16*int(n==0) -4 +5*(-1)^n*(3*b(n) +11*b(n-1)) +5*b(n) +19*b(n-1))
    [A103625(n) for n in range(1,41)] # G. C. Greubel, Mar 22 2024

Formula

G.f.: 2*x^3*(1+x+x^2)/((1-x)*(1-4*x+x^2)*(1+4*x+x^2)). - Ralf Stephan, May 18 2007
a(n) = (1/8)*(-16*[n=0] - 4 + 5*(-1)^n*(3*A125905(n) + 11*A125905(n-1)) + (5*A125905(n) + 19*A125905(n-1))), where A125905(n) = ChebyshevU(n, -2). - G. C. Greubel, Mar 22 2024
E.g.f.: (15*cosh(sqrt(3)*x)*(2*cosh(2*x) + sinh(2*x))/2 - sqrt(3)*(4*cosh(x) + sinh(x))*(cosh(x) + 4*sinh(x))*sinh(sqrt(3)*x) - 3*(4 + exp(x)))/6. - Stefano Spezia, Jun 02 2024

Extensions

Terms a(17) onward added by G. C. Greubel, Jul 15 2018
Edited by G. C. Greubel, Mar 22 2024

A103715 Define a(1)=0, a(2)=0, a(3)=1, a(4)=3, a(5)=18, a(6)=22, a(7)=119, a(8)=285. Then a(n) = a(n-8) + 4*sqrt(420*a(n-4)^2 + 420*a(n-4) + 1).

Original entry on oeis.org

0, 0, 1, 3, 18, 22, 119, 285, 1516, 1844, 9797, 23407, 124334, 151226, 803275, 1919129, 10193912, 12398728, 65858793, 157345211, 835776490, 1016544510, 5399617791, 12900388213, 68523478308, 83344251132, 442702800109
Offset: 1

Views

Author

Pierre CAMI, Mar 27 2005

Keywords

Comments

By construction, a(n) is an integer so 420*a(n)^2 + 420*a(n) + 1 = j(n)^2. The sequence j(n) starts: 1, 1, 29, 71, 379, 461, 2449, 5851, ...

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x^2+1)*(x^4+2*x^3+14*x^2+2*x+1)/((1-x)*(x^8- 82*x^4 +1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    Rest[CoefficientList[Series[x^3*(x^2+1)*(x^4+2*x^3+14*x^2+2*x+1)/((1-x)*(x^8-82*x^4+1)), {x, 0, 30}], x]] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(x^3*(x^2+1)*(x^4+2*x^3+14*x^2 +2*x +1)/((1-x)*(x^8-82*x^4+1)))) \\ G. C. Greubel, Jul 15 2018
    

Formula

From R. J. Mathar, Nov 13 2009: (Start)
a(n) = a(n-1) + 82*a(n-4) - 82*a(n-5) - a(n-8) + a(n-9).
G.f.: x^3*(x^2+1)*(x^4+2*x^3+14*x^2+2*x+1)/((1-x)*(x^8-82*x^4+1)). (End)

Extensions

Extended by R. J. Mathar, Nov 13 2009

A105076 Numbers k such that 60*k^2 + 60*k + 1 is a square.

Original entry on oeis.org

0, 1, 2, 11, 19, 90, 153, 712, 1208, 5609, 9514, 44163, 74907, 347698, 589745, 2737424, 4643056, 21551697, 36554706, 169676155, 287794595, 1335857546, 2265802057, 10517184216, 17838621864, 82801616185, 140443172858, 651895745267
Offset: 1

Views

Author

Pierre CAMI, Apr 06 2005

Keywords

Crossrefs

Formula

From R. J. Mathar, Nov 13 2009: (Start)
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(1+x+x^2)/((1-x)*(x^4-8*x^2+1)). (End)

Extensions

Partially edited by Jon E. Schoenfield, Oct 13 2019
Showing 1-9 of 9 results.