cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A004189 a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 10, 99, 980, 9701, 96030, 950599, 9409960, 93149001, 922080050, 9127651499, 90354434940, 894416697901, 8853812544070, 87643708742799, 867583274883920, 8588189040096401, 85014307126080090, 841554882220704499, 8330534515080964900, 82463790268588944501, 816307368170808480110
Offset: 0

Views

Author

Keywords

Comments

Indices of square numbers which are also generalized pentagonal numbers.
If t(n) denotes the n-th triangular number, t(A105038(n))=a(n)*a(n+1). - Robert Phillips (bobanne(AT)bellsouth.net), May 25 2008
The n-th term is a(n) = ((5+sqrt(24))^n - (5-sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, May 31 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 10's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
a(n) and b(n) (A001079) are the nonnegative proper solutions of the Pell equation b(n)^2 - 6*(2*a(n))^2 = +1. See the cross reference to A001079 below. - Wolfdieter Lang, Jun 26 2013
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,9}. - Milan Janjic, Jan 25 2015
For n > 1, this also gives the number of (n-1)-decimal-digit numbers which avoid a particular two-digit number with distinct digits. For example, there are a(5) = 9701 4-digit numbers which do not include "39" as a substring; see Wikipedia link. - Charles R Greathouse IV, Jan 14 2016
All possible solutions for y in Pell equation x^2 - 24*y^2 = 1. The values for x are given in A001079. - Herbert Kociemba, Jun 05 2022
Dickson on page 384 gives the Diophantine equation "(20) 24x^2 + 1 = y^2" and later states "... three consecutive sets (x_i, y_i) of solutions of (20) or 2x^2 + 1 = 3y^2 satisfy x_{n+1} = 10x_n - x_{n-1}, y_{n+1} = 10y_n - y_{n-1} with (x_1, y_1) = (0, 1) or (1, 1), (x_2, y_2) = (1, 5) or (11, 9), respectively." The first set of values (x_n, y_n) = (A001079(n-1), a(n-1)). - Michael Somos, Jun 19 2023

Examples

			a(2)=10 and (3(-8)^2-(-8))/2=10^2, a(3)=99 and (3(81)^2-(81))/2=99^2. - _Michael Somos_, Sep 05 2006
G.f. = x + 10*x^2 + 99*x^3 + 980*x^4 + 9701*x^5 + 96030*x^6 + ...
		

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 384.

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), this sequence (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=5;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..20] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A004189 := proc(n)
        option remember;
        if n <= 1 then
            n ;
        else
            10*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A004189(n),n=0..20) ; # R. J. Mathar, Apr 30 2017
    seq( simplify(ChebyshevU(n-1, 5)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n-1,1,5], {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008; modified by G. C. Greubel, Jun 06 2019 *)
    LinearRecurrence[{10, -1}, {0, 1}, 20] (* Jean-François Alcover, Nov 15 2017 *)
    ChebyshevU[Range[21] -2, 5] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    {a(n) = subst(poltchebi(n+1) - 5*poltchebi(n), 'x, 5) / 24}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    a(n)=([9,1;8,1]^(n-1)*[1;1])[1,1] \\ Charles R Greathouse IV, Jan 14 2016
    
  • PARI
    vector(21, n, n--; polchebyshev(n-1, 2, 5) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number1(n,10,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n-1,5) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = S(2*n-1, sqrt(12))/sqrt(12) = S(n-1, 10); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.
A001079(n) = sqrt(24*(a(n)^2)+1), that is a(n) = sqrt((A001079(n)^2-1)/24).
From Barry E. Williams, Aug 18 2000: (Start)
a(n) = ( (5+2*sqrt(6))^n - (5-2*sqrt(6))^n )/(4*sqrt(6)).
G.f.: x/(1-10*x+x^2). (End)
a(-n) = -a(n). - Michael Somos, Sep 05 2006
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 9*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 10*a(n-1) - a(n-2). (End)
a(n+1) = Sum_{k=0..n} A101950(n,k)*9^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = 1/2*(2 + sqrt(6)).
Product {n >= 2} (1 - 1/a(n)) = 1/5*(2 + sqrt(6)). (End)
a(n) = (A054320(n-1) + A072256(n))/2. - Richard R. Forberg, Nov 21 2013
a(2*n - 1) = A046173(n).
E.g.f.: exp(5*x)*sinh(2*sqrt(6)*x)/(2*sqrt(6)). - Stefano Spezia, Dec 12 2022
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*8^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*12^k. - Peter Bala, Jul 18 2023

A103200 a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5.

Original entry on oeis.org

1, 2, 11, 19, 90, 153, 712, 1208, 5609, 9514, 44163, 74907, 347698, 589745, 2737424, 4643056, 21551697, 36554706, 169676155, 287794595, 1335857546, 2265802057, 10517184216, 17838621864, 82801616185, 140443172858, 651895745267, 1105706761003, 5132364345954
Offset: 1

Views

Author

K. S. Bhanu and M. N. Deshpande, Mar 24 2005

Keywords

Comments

The original version of this question was as follows: Let a(1) = 1, a(2) = 2, a(3) = 11, a(4) = 19; for n = 1..4 let b(n) = sqrt(60 a(n)^2 + 60 a(n) + 1); for n >= 5 let a(n) = a(n-4) + b(n-2), b(n) = sqrt(60 a(n)^2 + 60 a(n) +1). Bhanu and Deshpande ask for a proof that a(n) and b(n) are always integers. The b(n) sequence is A103201.
This sequence is also the interleaving of two sequences c and d that can be extended backwards: c(0) = c(1) = 0, c(n) = sqrt(60 c(n-1)^2 + 60 c(n-1) +1) + c(n-2) giving 0,0,1,11,90,712,5609,... d(0) = 1, d(1) = 0, d(n) = sqrt(60 d(n-1)^2 + 60 d(n-1) +1) + d(n-2) giving 1,0,2,19,153,1208,9514,... and interleaved: 0,1,0,0,1,2,11,19,90,153,712,1208,5609,9514,... lim_{n->infinity} a(n)/a(n-2) = 1/(4 - sqrt(15)), (1/(4-sqrt(15)))^n approaches an integer as n -> infinity. - Gerald McGarvey, Mar 29 2005

References

  • K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.

Crossrefs

Cf. A103201, A177187 (first differences).

Programs

  • Magma
    I:=[1,2,11,19,90]; [n le 5 select I[n] else Self(n-1)+8*Self(n-2)-8*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Sep 28 2011
  • Maple
    a[1]:=1: a[2]:=2:a[3]:=11: a[4]:=19: for n from 5 to 31 do a[n]:=a[n-4]+sqrt(60*a[n-2]^2+60*a[n-2]+1) od:seq(a[n],n=1..31); # Emeric Deutsch, Apr 13 2005
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==2,a[3]==11,a[4]==19,a[n]==a[n-4]+ Sqrt[60a[n-2]^2+60a[n-2]+1]},a[n],{n,40}] (* or *) LinearRecurrence[ {1,8,-8,-1,1},{1,2,11,19,90},40] (* Harvey P. Dale, Sep 27 2011 *)
    CoefficientList[Series[-x*(1 + x + x^2)/((x - 1)*(x^4 - 8*x^2 + 1)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *)

Formula

Comments from Pierre CAMI and Gerald McGarvey, Apr 20 2005: (Start)
Sequence satisfies a(0)=0, a(1)=1, a(2)=2, a(3)=11; for n > 3, a(n) = 8*a(n-2) - a(n-4) + 3.
G.f.: -x*(1 + x + x^2) / ( (x - 1)*(x^4 - 8*x^2 + 1) ). Note that the 3 = the sum of the coefficients in the numerator of the g.f., 8 appears in the denominator of the g.f. and 8 = 2*3 + 2. Similar relationships hold for other series defined as nonnegative n such that m*n^2 + m*n + 1 is a square, here m=60. Cf. A001652, A001570, A049629, A105038, A105040, A104240, A077288, A105036, A105037. (End)
a(2n) = (A105426(n)-1)/2, a(2n+1) = (A001090(n+2) - 5*A001090(n+1) - 1)/2. - Ralf Stephan, May 18 2007
a(1)=1, a(2)=2, a(3)=11, a(4)=19, a(5)=90, a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Sep 27 2011

Extensions

More terms from Pierre CAMI and Emeric Deutsch, Apr 13 2005

A222390 Nonnegative integers m such that 10*m*(m+1)+1 is a square.

Original entry on oeis.org

0, 3, 15, 132, 588, 5031, 22347, 191064, 848616, 7255419, 32225079, 275514876, 1223704404, 10462309887, 46468542291, 397292260848, 1764580902672, 15086643602355, 67007605759263, 572895164628660, 2544524437949340, 21754929612286743, 96624921036315675
Offset: 1

Views

Author

Bruno Berselli, Feb 18 2013

Keywords

Comments

a(n+1)/a(n) tends alternately to (7+2*sqrt(10))/3 and (13+4*sqrt(10))/3; a(n+2)/a(n) tends to A176398^2.
Subsequence of A014601.

Crossrefs

Cf. nonnegative integers m such that k*m*(m+1)+1 is a square: A001652 (k=2), A001921 (k=3), A001477 (k=4), A053606 (k=5), A105038 (k=6), A105040 (k=7), A053141 (k=8), this sequence (k=10), A105838 (k=11), A061278 (k=12), A104240 (k=13); A105063 (k=17), A222393 (k=18), A101180 (k=19), A077259 (k=20) [incomplete list].
Cf. A221875.

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(3*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2))));
    
  • Magma
    I:=[0,3,15,132,588]; [n le 5 select I[n] else Self(n-1) +38*Self(n-2)-38*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    LinearRecurrence[{1, 38, -38, -1, 1}, {0, 3, 15, 132, 588}, 23]
    CoefficientList[Series[3 x (1 + 4 x + x^2)/((1 - x) (1 - 6 x - x^2) (1 + 6 x - x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(-1/2+((5+(-1)^n*sqrt(10))*(3-sqrt(10))^(2*floor(n/2))+(5-(-1)^n*sqrt(10))*(3+sqrt(10))^(2*floor(n/2)))/20), n, 1, 23);
    
  • PARI
    x='x+O('x^30); concat([0], Vec(3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)))) \\ G. C. Greubel, Jul 15 2018

Formula

G.f.: 3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)).
a(n) = a(-n+1) = a(n-1)+38*a(n-2)-38*a(n-3)-a(n-4)+a(n-5).
a(n) = -1/2+((5+t*(-1)^n)*(3-t)^(2*floor(n/2))+(5-t*(-1)^n)*(3+t)^(2*floor(n/2)))/20, where t=sqrt(10).
2*a(n)+1 = A221875(n).

A120744 Least k>0 such that a centered polygonal number nk(k+1)/2+1 is a perfect square; or -1 if no such number exists.

Original entry on oeis.org

2, -1, 1, 3, 2, 7, 15, 1, 16, 8, 14, 4, 5, 15, 1, 2, 5, -1, 6, 3, 2, 39, 6, 1, 21, 7, 110, 3, 15, 7, 15, -1, 2, 8, 1, 4, 989, 8, 14, 2, 45, 15, 9, 4, 5, 335, 9, 1, 29, -1, 30, 15, 10, 415, 6, 2, 10, 32, 54, 3, 77, 55, 1, 5, 2, 7, 47750, 11, 15, 23, 47, -1, 48, 24, 16, 12, 5, 8, 2639, 1, 6720, 704, 38, 4, 2, 39, 505, 3, 13, 56, 9, 20, 13, 1631, 41
Offset: 1

Views

Author

Alexander Adamchuk, Apr 26 2007

Keywords

Examples

			a(5) = 2 because A129556(2) = 2>1 and A129556(1) = 0<1.
		

Crossrefs

Formula

a(n) = -1 for n in A166259.
a(n) = 1 for n = k^2-1.

Extensions

Edited and b-file provided by Max Alekseyev, Jan 20 2010

A221074 Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 3.

Original entry on oeis.org

2, 8, 1, 16, 1, 96, 1, 176, 1, 968, 1, 1760, 1, 9600, 1, 17440, 1, 95048, 1, 172656, 1, 940896, 1, 1709136, 1, 9313928, 1, 16918720, 1, 92198400, 1, 167478080, 1, 912670088, 1, 1657862096, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 3. For other cases see A221073 (m = 2), A221075 (m = 4) and A221076 (m = 5).

Examples

			Product {n >= 0} {1 - sqrt(3)*(sqrt(3) - sqrt(2))^(4*n+3)}/{1 - sqrt(3)*(sqrt(3) - sqrt(2))^(4*n+1)} = 2.11180 16361 44098 52896 ...
= 2 + 1/(8 + 1/(1 + 1/(16 + 1/(1 + 1/(96 + 1/(1 + 1/(176 + ...))))))).
Since (sqrt(3) - sqrt(2))^3 = 9*sqrt(3) - 11*sqrt(2) we have the following simple continued fraction expansion:
product {n >= 0} {1 - sqrt(3)*(9*sqrt(3) - 11*sqrt(2))^(4*n+3)}/{1 - sqrt(3)*(9*sqrt(3) - 11*sqrt(2))^(4*n+1)} = 1 + 1/(16 + 1/(1 + 1/(968 + 1/(1 + 1/(17440 + 1/(1 + 1/(940896 + ...))))))).
		

Crossrefs

Cf. A098297, A105438, A132596, A174500, A221073 (m = 2), A221075 (m = 4), A221076 (m = 5).

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (sqrt(3) + sqrt(2))^(2*n) + (sqrt(3) - sqrt(2))^(2*n) - 2;
a(4*n - 1) = 1/sqrt(3)*{(sqrt(3) + sqrt(2))^(2*n + 1) + (sqrt(3) - sqrt(2))^(2*n + 1)} - 2.
a(4*n - 3) = 8*A098297(n) = 4*A132596(n); a(4*n - 1) = 4*A105038(n).
O.g.f.: 2 + x^2/(1 - x^2) + 8*x*(1 + x^2)^2/(1 - 11*x^4 + 11*x^8 - x^12) = 2 + 8*x + x^2 + 16*x^3 + x^4 + 96*x^5 + ....
If we denote the present sequence by [2; 8, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-sqrt(3)*{(sqrt(3)-sqrt(2))^(2*k+1)}^(4*n+3)]/[1 - sqrt(3)*{(sqrt(3)-sqrt(2))^(2*k+1)}^(4*n+1)]. An example is given below.
O.g.f.: (x^10-2*x^8-10*x^6+20*x^4-8*x^3+x^2-8*x-2) / ((x-1)*(x+1)*(x^8-10*x^4+1)). - Colin Barker, Jan 10 2014

A166259 Positive integers n such that a centered polygonal number n*k*(k+1)/2+1 is not a square for any k > 0.

Original entry on oeis.org

2, 18, 32, 50, 72, 98, 128, 162, 200, 242, 338, 392, 450, 512, 578, 648, 722, 882, 968, 1058, 1152, 1250, 1352, 1458, 1682, 1800, 1922, 2048, 2178, 2312, 2401, 2450, 2662, 2738, 2809, 2888, 3042, 3174, 3200, 3362, 3528, 3698, 3750, 4050, 4225, 4232, 4418, 4489, 4608, 4802
Offset: 1

Views

Author

Alexander Adamchuk, Oct 10 2009

Keywords

Comments

Positive integers n such that A120744(n) = -1.

Crossrefs

Extensions

Edited and extended by Max Alekseyev, Jan 20 2010

A222393 Nonnegative integers m such that 18*m*(m+1)+1 is a square.

Original entry on oeis.org

0, 4, 12, 152, 424, 5180, 14420, 175984, 489872, 5978292, 16641244, 203085960, 565312440, 6898944364, 19203981732, 234361022432, 652370066464, 7961375818340, 22161378278060, 270452416801144, 752834491387592, 9187420795420572, 25574211328900084
Offset: 1

Views

Author

Bruno Berselli, Feb 19 2013

Keywords

Comments

a(n+2)/a(n) tends to A156164.
a(n) is congruent to {0,2,4} (mod 5, 6 and 10).

Crossrefs

Cf. nonnegative integers n such that k*n*(n+1)+1 is a square: A001652 (k=2), A001921 (k=3), A001477 (k=4), A053606 (k=5), A105038 (k=6), A105040 (k=7), A053141 (k=8), A222390 (k=10), A105838 (k=11), A061278 (k=12), A104240 (k=13); A105063 (k=17), this sequence (k=18), A101180 (k=19), A077259 (k=20) [incomplete list].

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(4*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))));
    
  • Magma
    I:=[0,4,12,152,424]; [n le 5 select I[n] else Self(n-1)+34*Self(n-2)-34*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 4, 12, 152, 424}, 23]
    CoefficientList[Series[4 x (1 + x)^2 / ((1 - x) (1 - 6 x + x^2) (1 + 6 x + x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(-1/2+((3+sqrt(2)*(-1)^n)*(3-2*sqrt(2))^(2*floor(n/2))+(3-sqrt(2)*(-1)^n)*(3+2*sqrt(2))^(2*floor(n/2)))/12), n, 1, 23);
    
  • PARI
    x='x+O('x^30); concat([0], Vec(4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)))) \\ G. C. Greubel, Jul 15 2018

Formula

G.f.: 4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)).
a(n) = a(-n+1) = a(n-1)+34*a(n-2)-34*a(n-3)-a(n-4)+a(n-5).
a(n) = -1/2+((3+t*(-1)^n)*(3-2*t)^(2*floor(n/2))+(3-t*(-1)^n)*(3+2*t)^(2*floor(n/2)))/12, where t=sqrt(2).

A145856 Least number k>1 such that centered n-gonal number n*k(k-1)/2+1 is a perfect square, or 0 if no such k exists.

Original entry on oeis.org

3, 0, 2, 4, 3, 8, 16, 2, 17, 9, 15, 5, 6, 16, 2, 3, 6, 0, 7, 4, 3, 40, 7, 2, 22, 8, 111, 4, 16, 8, 16, 0, 3, 9, 2, 5, 990, 9, 15, 3, 46, 16, 10, 5, 6, 336, 10, 2, 30, 0, 31, 16, 11, 416, 7, 3, 11, 33, 55, 4, 78, 56, 2, 6, 3, 8, 47751, 12, 16, 24, 48, 0, 49, 25, 17, 13, 6, 9, 2640, 2, 6721
Offset: 1

Views

Author

Alexander Adamchuk, Oct 22 2008

Keywords

References

  • Jonathan Vos Post, When Centered Polygonal Numbers are Perfect Squares, submitted to Mathematics Magazine, 4 May 2004, manuscript no. 04-1165, unpublished, available upon request. - Jonathan Vos Post, Oct 25 2008

Crossrefs

Formula

a(n) = 0 for n in A166259.
a(n) = A120744(n) + 1. - Alexander Adamchuk, Oct 10 2009

Extensions

Edited by Max Alekseyev, Jan 23 2010

A219113 Sequence of integers which are simultaneously a sum of consecutive squares and a difference of consecutive cubes.

Original entry on oeis.org

1, 61, 5941, 582121, 57041881, 5589522181, 547716131821, 53670591396241, 5259170240699761, 515345012997180301, 50498552103482969701, 4948342761128333850361, 484887092038473234365641, 47513986677009248633982421, 4655885807254867892895911581
Offset: 1

Views

Author

Igor Schein, Nov 12 2012

Keywords

Examples

			1 = 0^2+1^2 = 1^3-0^3.
61 = 5^2+6^2 = 5^3-4^3.
		

Crossrefs

Cf. A105038.

Programs

  • PARI
    A(n)=my(v=[0,4],k,a);a=if(n<3,v[n],for(k=3,n,v=concat(v,v[#v]*10-v[#v-1]+4));v[#v]);3*a*(a+1)+1

Formula

a(n) = 3*A105038(n)*(A105038(n)+1)+1.
G.f.: -x*(x^2-38*x+1) / ((x-1)*(x^2-98*x+1)). [Colin Barker, Nov 21 2012]
a(n) = (6+(5-2*sqrt(6))^(2*n-1)+(5+2*sqrt(6))^(2*n-1))/16. - Gerry Martens, Jun 06 2015
a(n) = 98*a(n-1)-a(n-2)-36, n>=3. - R. J. Mathar, Nov 07 2015
Showing 1-9 of 9 results.