A104240
Nonnegative integers n such that 13*n^2 + 13*n + 1 is a square.
Original entry on oeis.org
0, 7, 144, 504, 9727, 187560, 654840, 12626287, 243453384, 849982464, 16388911447, 316002305520, 1103276584080, 21272794432567, 410170749112224, 1432052156154024, 27612070784561167, 532401316345361880, 1858802595411339720, 35840446605565962847
Offset: 0
-
m:=19; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((7+137*x+360*x^2+137*x^3+7*x^4)/((1-x)*(1-11*x+x^2)*(1+11*x+120*x^2+11*x^3+x^4)))); // Bruno Berselli, Feb 19 2013
-
LinearRecurrence[{1, 0, 1298, -1298, 0, -1, 1}, {0, 7, 144, 504, 9727, 187560, 654840}, 20] (* Bruno Berselli, Feb 19 2013 *)
-
for(n=0,12626287,if(issquare(13*n*(n+1)+1),print1(n,",")))
A105838
Nonnegative integers n such that 11*n^2 + 11*n + 1 is a square.
Original entry on oeis.org
0, 39, 159, 15720, 63480, 6256719, 25265079, 2490158640, 10055438160, 991076882199, 4002039122799, 394446108956760, 1592801515436040, 156988560287908479, 633931001104421319, 62481052548478618080, 252302945638044249120, 24867301925734202087559
Offset: 1
Cf.
A105837 (square roots of 11*a(n)^2+11*a(n)+1).
-
m:=17; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(3*(13+40*x+13*x^2)/((1-x)*(1-20*x+x^2)*(1+20*x+x^2)))); // Bruno Berselli, Feb 20 2013
-
LinearRecurrence[{1, 398, -398, -1, 1}, {0, 39, 159, 15720, 63480}, 18] (* Bruno Berselli, Feb 20 2013 *)
-
makelist(expand(-1/2+((11+2*sqrt(11)*(-1)^n)*(10-3*sqrt(11))^(2*floor(n/2))+(11-2*sqrt(11)*(-1)^n)*(10+3*sqrt(11))^(2*floor(n/2)))/44), n, 1, 18); /* Bruno Berselli, Feb 20 2013 */
A222393
Nonnegative integers m such that 18*m*(m+1)+1 is a square.
Original entry on oeis.org
0, 4, 12, 152, 424, 5180, 14420, 175984, 489872, 5978292, 16641244, 203085960, 565312440, 6898944364, 19203981732, 234361022432, 652370066464, 7961375818340, 22161378278060, 270452416801144, 752834491387592, 9187420795420572, 25574211328900084
Offset: 1
Cf. nonnegative integers n such that k*n*(n+1)+1 is a square:
A001652 (k=2),
A001921 (k=3),
A001477 (k=4),
A053606 (k=5),
A105038 (k=6),
A105040 (k=7),
A053141 (k=8),
A222390 (k=10),
A105838 (k=11),
A061278 (k=12),
A104240 (k=13);
A105063 (k=17), this sequence (k=18),
A101180 (k=19),
A077259 (k=20) [incomplete list].
-
m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(4*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))));
-
I:=[0,4,12,152,424]; [n le 5 select I[n] else Self(n-1)+34*Self(n-2)-34*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 4, 12, 152, 424}, 23]
CoefficientList[Series[4 x (1 + x)^2 / ((1 - x) (1 - 6 x + x^2) (1 + 6 x + x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(-1/2+((3+sqrt(2)*(-1)^n)*(3-2*sqrt(2))^(2*floor(n/2))+(3-sqrt(2)*(-1)^n)*(3+2*sqrt(2))^(2*floor(n/2)))/12), n, 1, 23);
-
x='x+O('x^30); concat([0], Vec(4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)))) \\ G. C. Greubel, Jul 15 2018
Showing 1-3 of 3 results.
Comments