A103200
a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5.
Original entry on oeis.org
1, 2, 11, 19, 90, 153, 712, 1208, 5609, 9514, 44163, 74907, 347698, 589745, 2737424, 4643056, 21551697, 36554706, 169676155, 287794595, 1335857546, 2265802057, 10517184216, 17838621864, 82801616185, 140443172858, 651895745267, 1105706761003, 5132364345954
Offset: 1
K. S. Bhanu and M. N. Deshpande, Mar 24 2005
- K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.
-
I:=[1,2,11,19,90]; [n le 5 select I[n] else Self(n-1)+8*Self(n-2)-8*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Sep 28 2011
-
a[1]:=1: a[2]:=2:a[3]:=11: a[4]:=19: for n from 5 to 31 do a[n]:=a[n-4]+sqrt(60*a[n-2]^2+60*a[n-2]+1) od:seq(a[n],n=1..31); # Emeric Deutsch, Apr 13 2005
-
RecurrenceTable[{a[1]==1,a[2]==2,a[3]==11,a[4]==19,a[n]==a[n-4]+ Sqrt[60a[n-2]^2+60a[n-2]+1]},a[n],{n,40}] (* or *) LinearRecurrence[ {1,8,-8,-1,1},{1,2,11,19,90},40] (* Harvey P. Dale, Sep 27 2011 *)
CoefficientList[Series[-x*(1 + x + x^2)/((x - 1)*(x^4 - 8*x^2 + 1)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *)
A105038
Nonnegative n such that 6*n^2 + 6*n + 1 is a square.
Original entry on oeis.org
0, 4, 44, 440, 4360, 43164, 427284, 4229680, 41869520, 414465524, 4102785724, 40613391720, 402031131480, 3979697923084, 39394948099364, 389969783070560, 3860302882606240, 38213059042991844, 378270287547312204, 3744489816430130200, 37066627876753989800
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
-
CoefficientList[Series[4x/(1-11x+11x^2-x^3),{x,0,30}],x] (* or *) LinearRecurrence[{11,-11,1},{0,4,44},30] (* Harvey P. Dale, Sep 29 2013 *)
-
for(n=0,427284,if(issquare(6*n*(n+1)+1),print1(n,",")))
-
Vec(4*x/(1-11*x+11*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2012
A222390
Nonnegative integers m such that 10*m*(m+1)+1 is a square.
Original entry on oeis.org
0, 3, 15, 132, 588, 5031, 22347, 191064, 848616, 7255419, 32225079, 275514876, 1223704404, 10462309887, 46468542291, 397292260848, 1764580902672, 15086643602355, 67007605759263, 572895164628660, 2544524437949340, 21754929612286743, 96624921036315675
Offset: 1
Cf. nonnegative integers m such that k*m*(m+1)+1 is a square:
A001652 (k=2),
A001921 (k=3),
A001477 (k=4),
A053606 (k=5),
A105038 (k=6),
A105040 (k=7),
A053141 (k=8), this sequence (k=10),
A105838 (k=11),
A061278 (k=12),
A104240 (k=13);
A105063 (k=17),
A222393 (k=18),
A101180 (k=19),
A077259 (k=20) [incomplete list].
-
m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(3*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2))));
-
I:=[0,3,15,132,588]; [n le 5 select I[n] else Self(n-1) +38*Self(n-2)-38*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
-
LinearRecurrence[{1, 38, -38, -1, 1}, {0, 3, 15, 132, 588}, 23]
CoefficientList[Series[3 x (1 + 4 x + x^2)/((1 - x) (1 - 6 x - x^2) (1 + 6 x - x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(-1/2+((5+(-1)^n*sqrt(10))*(3-sqrt(10))^(2*floor(n/2))+(5-(-1)^n*sqrt(10))*(3+sqrt(10))^(2*floor(n/2)))/20), n, 1, 23);
-
x='x+O('x^30); concat([0], Vec(3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)))) \\ G. C. Greubel, Jul 15 2018
A222393
Nonnegative integers m such that 18*m*(m+1)+1 is a square.
Original entry on oeis.org
0, 4, 12, 152, 424, 5180, 14420, 175984, 489872, 5978292, 16641244, 203085960, 565312440, 6898944364, 19203981732, 234361022432, 652370066464, 7961375818340, 22161378278060, 270452416801144, 752834491387592, 9187420795420572, 25574211328900084
Offset: 1
Cf. nonnegative integers n such that k*n*(n+1)+1 is a square:
A001652 (k=2),
A001921 (k=3),
A001477 (k=4),
A053606 (k=5),
A105038 (k=6),
A105040 (k=7),
A053141 (k=8),
A222390 (k=10),
A105838 (k=11),
A061278 (k=12),
A104240 (k=13);
A105063 (k=17), this sequence (k=18),
A101180 (k=19),
A077259 (k=20) [incomplete list].
-
m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(4*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))));
-
I:=[0,4,12,152,424]; [n le 5 select I[n] else Self(n-1)+34*Self(n-2)-34*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 4, 12, 152, 424}, 23]
CoefficientList[Series[4 x (1 + x)^2 / ((1 - x) (1 - 6 x + x^2) (1 + 6 x + x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(-1/2+((3+sqrt(2)*(-1)^n)*(3-2*sqrt(2))^(2*floor(n/2))+(3-sqrt(2)*(-1)^n)*(3+2*sqrt(2))^(2*floor(n/2)))/12), n, 1, 23);
-
x='x+O('x^30); concat([0], Vec(4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)))) \\ G. C. Greubel, Jul 15 2018
A105046
a(n) = 1298*a(n-3) - a(n-6) - 648, for n>6, with a(0)=0, a(1)=1, a(2)=8, a(3)=145, a(4)=505, a(5)=9728, a(6)=187561.
Original entry on oeis.org
0, 1, 8, 145, 505, 9728, 187561, 654841, 12626288, 243453385, 849982465, 16388911448, 316002305521, 1103276584081, 21272794432568, 410170749112225, 1432052156154025, 27612070784561168, 532401316345361881, 1858802595411339721, 35840446605565962848
Offset: 0
-
R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+7*x+137*x^2-938*x^3+137*x^4+7*x^5+x^6) / ((1-x)*(1-11*x+x^2)*(1+11*x+120*x^2+11*x^3+x^4)) )); // G. C. Greubel, Mar 14 2023
-
CoefficientList[Series[x (1+7x+137x^2-938x^3+137x^4+7x^5+x^6)/((1-x) (1-11x+x^2)(1+11x+120x^2+11x^3+x^4)),{x,0,30}],x] (* or *) LinearRecurrence[{1,0,1298,-1298,0,-1,1},{0,1,8,145,505,9728,187561, 654841},30] (* Harvey P. Dale, Jun 12 2012 *)
-
@CachedFunction
def a(n): # a = A105046
if (n<8): return (0,1,8,145,505,9728,187561,654841)[n]
else: return a(n-1) +1298*a(n-3) -1298*a(n-4) -a(n-6) +a(n-7)
[a(n) for n in range(41)] # G. C. Greubel, Mar 14 2023
Showing 1-5 of 5 results.
Comments