A028230 Bisection of A001353. Indices of square numbers which are also octagonal.
1, 15, 209, 2911, 40545, 564719, 7865521, 109552575, 1525870529, 21252634831, 296011017105, 4122901604639, 57424611447841, 799821658665135, 11140078609864049, 155161278879431551, 2161117825702177665, 30100488280951055759, 419245718107612602961, 5839339565225625385695
Offset: 1
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..890
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- T. N. E. Greville, Table for third-degree spline interpolations with equally spaced arguments, Math. Comp., 24 (1970), 179-183.
- W. D. Hoskins, Table for third-degree spline interpolation using equi-spaced knots, Math. Comp., 25 (1971), 797-801.
- Tanya Khovanova, Recursive Sequences
- E. Kilic, Y. T. Ulutas, and N. Omur, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011) #11.5.6, table 4, k=1, t=2.
- Dino Lorenzini, and Z. Xiang, Integral points on variable separated curves, Preprint 2016.
- F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
- Eric Weisstein's World of Mathematics, Octagonal Square Number.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
GAP
a:=[1,15];; for n in [3..30] do a[n]:=14*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
Magma
I:=[1,15]; [n le 2 select I[n] else 14*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 06 2019
-
Maple
seq(coeff(series((1+x)/(1-14*x+x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 06 2019
-
Mathematica
LinearRecurrence[{14, - 1}, {1, 15}, 17] (* Ant King, Nov 15 2011 *) CoefficientList[Series[(1+x)/(1-14x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
-
PARI
Vec((1+x)/(1-14*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 16 2014
-
PARI
isok(n) = ispolygonal(n^2, 8); \\ Michel Marcus, Jul 09 2017
-
Sage
[(lucas_number2(n,14,1)-lucas_number2(n-1,14,1))/12 for n in range(1, 18)] # Zerinvary Lajos, Nov 10 2009
Formula
a(n) = 2*A001921(n)+1.
a(n) = 14*a(n-1) - a(n-2) for n>1.
a(n) = S(n, 14) + S(n-1, 14) = S(2*n, 4) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0, S(n, 14) = A007655(n+1) and S(n, 4) = A001353(n+1).
G.f.: x*(1+x)/(1-14*x+x^2).
a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := 2+sqrt(3) and am := 2-sqrt(3).
a(n+1) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*16^(n-k), n>=0.
a(n) = sqrt((4*A001570(n-1)^2 - 1)/3).
a(n) ~ 1/6*sqrt(3)*(2 + sqrt(3))^(2*n-1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
4*a(n+1) = (A001834(n))^2 + 4*(A001835(n+1))^2 - (A001835(n))^2. E.g. 4*a(3) = 4*209 = 19^2 + 4*11^2 - 3^2 = (A001834(2))^2 + 4*(A001835(3))^2 - (A001835(2))^2. Generating floretion: 'i + 2'j + 3'k + i' + 2j' + 3k' + 4'ii' + 3'jj' + 4'kk' + 3'ij' + 3'ji' + 'jk' + 'kj' + 4e. - Creighton Dement, Dec 04 2004
a(n) = f(a(n-1),7) + f(a(n-2),7), where f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. - Marcos Carreira, Dec 27 2006
From Ant King, Nov 15 2011: (Start)
a(n) = 1/6 * sqrt(3) * ( (tan(5*Pi/12)) ^ (2n-1) - (tan(Pi/12)) ^ (2n-1) ).
a(n) = floor (1/6 * sqrt(3) * (tan(5*Pi/12)) ^ (2n-1)). (End)
E.g.f.: 1 - exp(7*x)*(3*cosh(4*sqrt(3)*x) - 2*sqrt(3)*sinh(4*sqrt(3)*x))/3. - Stefano Spezia, Dec 12 2022
a(n) = sqrt(A036428(n)). - Bernard Schott, Dec 19 2022
Extensions
Additional comments from Wolfdieter Lang, Nov 29 2002
Incorrect recurrence relation deleted by Ant King, Nov 15 2011
Minor edits by Vaclav Kotesovec, Jan 28 2015
Comments