cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 190 results. Next

A028230 Bisection of A001353. Indices of square numbers which are also octagonal.

Original entry on oeis.org

1, 15, 209, 2911, 40545, 564719, 7865521, 109552575, 1525870529, 21252634831, 296011017105, 4122901604639, 57424611447841, 799821658665135, 11140078609864049, 155161278879431551, 2161117825702177665, 30100488280951055759, 419245718107612602961, 5839339565225625385695
Offset: 1

Views

Author

Keywords

Comments

Chebyshev S-sequence with Diophantine property.
4*b(n)^2 - 3*a(n)^2 = 1 with b(n) = A001570(n), n>=0.
y satisfying the Pellian x^2 - 3*y^2 = 1, for even x given by A094347(n). - Lekraj Beedassy, Jun 03 2004
a(n) = L(n,-14)*(-1)^n, where L is defined as in A108299; see also A001570 for L(n,+14). - Reinhard Zumkeller, Jun 01 2005
Product x*y, where the pair (x, y) solves for x^2 - 3y^2 = -2, i.e., a(n) = A001834(n)*A001835(n). - Lekraj Beedassy, Jul 13 2006
Numbers n such that RootMeanSquare(1,3,...,2*A001570(k)-1) = n. - Ctibor O. Zizka, Sep 04 2008
As n increases, this sequence is approximately geometric with common ratio r = lim(n -> oo, a(n)/a(n-1)) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - Ant King, Nov 15 2011

References

  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.

Crossrefs

Programs

  • GAP
    a:=[1,15];; for n in [3..30] do a[n]:=14*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
  • Magma
    I:=[1,15]; [n le 2 select I[n] else 14*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 06 2019
    
  • Maple
    seq(coeff(series((1+x)/(1-14*x+x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 06 2019
  • Mathematica
    LinearRecurrence[{14, - 1}, {1, 15}, 17] (* Ant King, Nov 15 2011 *)
    CoefficientList[Series[(1+x)/(1-14x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
  • PARI
    Vec((1+x)/(1-14*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 16 2014
    
  • PARI
    isok(n) = ispolygonal(n^2, 8); \\ Michel Marcus, Jul 09 2017
    
  • Sage
    [(lucas_number2(n,14,1)-lucas_number2(n-1,14,1))/12 for n in range(1, 18)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 2*A001921(n)+1.
a(n) = 14*a(n-1) - a(n-2) for n>1.
a(n) = S(n, 14) + S(n-1, 14) = S(2*n, 4) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0, S(n, 14) = A007655(n+1) and S(n, 4) = A001353(n+1).
G.f.: x*(1+x)/(1-14*x+x^2).
a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := 2+sqrt(3) and am := 2-sqrt(3).
a(n+1) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*16^(n-k), n>=0.
a(n) = sqrt((4*A001570(n-1)^2 - 1)/3).
a(n) ~ 1/6*sqrt(3)*(2 + sqrt(3))^(2*n-1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
4*a(n+1) = (A001834(n))^2 + 4*(A001835(n+1))^2 - (A001835(n))^2. E.g. 4*a(3) = 4*209 = 19^2 + 4*11^2 - 3^2 = (A001834(2))^2 + 4*(A001835(3))^2 - (A001835(2))^2. Generating floretion: 'i + 2'j + 3'k + i' + 2j' + 3k' + 4'ii' + 3'jj' + 4'kk' + 3'ij' + 3'ji' + 'jk' + 'kj' + 4e. - Creighton Dement, Dec 04 2004
a(n) = f(a(n-1),7) + f(a(n-2),7), where f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. - Marcos Carreira, Dec 27 2006
From Ant King, Nov 15 2011: (Start)
a(n) = 1/6 * sqrt(3) * ( (tan(5*Pi/12)) ^ (2n-1) - (tan(Pi/12)) ^ (2n-1) ).
a(n) = floor (1/6 * sqrt(3) * (tan(5*Pi/12)) ^ (2n-1)). (End)
a(n) = A001353(n)^2-A001353(n-1)^2. - Antonio Alberto Olivares, Apr 06 2020
E.g.f.: 1 - exp(7*x)*(3*cosh(4*sqrt(3)*x) - 2*sqrt(3)*sinh(4*sqrt(3)*x))/3. - Stefano Spezia, Dec 12 2022
a(n) = sqrt(A036428(n)). - Bernard Schott, Dec 19 2022

Extensions

Additional comments from Wolfdieter Lang, Nov 29 2002
Incorrect recurrence relation deleted by Ant King, Nov 15 2011
Minor edits by Vaclav Kotesovec, Jan 28 2015

A106707 a(n) = -A001353(n).

Original entry on oeis.org

0, -1, -4, -15, -56, -209, -780, -2911, -10864, -40545, -151316, -564719, -2107560, -7865521, -29354524, -109552575, -408855776, -1525870529, -5694626340, -21252634831, -79315912984, -296011017105, -1104728155436, -4122901604639, -15386878263120, -57424611447841
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,-1]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 05 2018
  • Maple
    a[0]:=0: a[1]:=-1: for n from 2 to 27 do a[n]:=4*a[n-1]-a[n-2] od: seq(a[n],n=0..27);
  • Mathematica
    LinearRecurrence[{4,-1},{0,-1},30] (* Harvey P. Dale, Nov 01 2019 *)
  • PARI
    x='x+O('x^30); Vec(-x/(1-4*x+x^2)) \\ G. C. Greubel, Feb 05 2018
    

Formula

G.f.: -x/(1-4*x+x^2).
a(n) = 4*a(n-1) - a(n-2); a(0)=0, a(1)=-1.

Extensions

Edited by N. J. A. Sloane, Apr 30 2006
New name from Joerg Arndt, Sep 22 2023

A317405 a(n) = n * A001353(n).

Original entry on oeis.org

1, 8, 45, 224, 1045, 4680, 20377, 86912, 364905, 1513160, 6211909, 25290720, 102251773, 410963336, 1643288625, 6541692416, 25939798993, 102503274120, 403800061789, 1586318259680, 6216231359205, 24304019419592, 94826736906697, 369285078314880, 1435615286196025
Offset: 1

Views

Author

Rigoberto Florez, Jul 27 2018

Keywords

Comments

Derivative of Chebyshev polynomials of the first kind evaluated at x=2.

Crossrefs

Cf. A001353, A028297 (Chebyshev polynomials of the first kind).

Programs

  • Mathematica
    Table[ D[ ChebyshevT[n, x], x] /. x -> 2, {n, 25}]
    CoefficientList[Series[-x(x^2 - 1)/(x^2 - 4x + 1)^2, {x, 0, 24}], x] (* Robert G. Wilson v, Aug 07 2018 *)
  • PARI
    Vec(x*(1 - x)*(1 + x) / (1 - 4*x + x^2)^2 + O(x^40)) \\ Colin Barker, Jul 28 2018
    
  • PARI
    a(n) = subst(deriv(polchebyshev(n)), x, 2); \\ Michel Marcus, Jul 29 2018

Formula

From Colin Barker, Jul 28 2018: (Start)
G.f.: x*(1 - x)*(1 + x) / (1 - 4*x + x^2)^2.
a(n) = (((-(2-sqrt(3))^n + (2+sqrt(3))^n)*n)) / (2*sqrt(3)).
a(n) = 8*a(n-1) - 18*a(n-2) + 8*a(n-3) - a(n-4) for n>4.
(End)

A238490 Odd primes p that divide a Lucas quotient studied by H. C. Williams: A001353(p - (3/p))/p, where (3/p) is a Jacobi symbol.

Original entry on oeis.org

103, 2297860813
Offset: 1

Views

Author

John Blythe Dobson, Mar 28 2014

Keywords

Comments

The condition for an odd prime p to be a member of this sequence is that p^2 divides A001353(p - (3/p)).
Neither this quotient, nor the Lucas sequence U(4, 1) on which it is based, has a common name; but its fundamental discriminant of 3 places it between the quotient based on the Pell sequence U(2, -1) with discriminant 2 (A000129), and that based on the Fibonacci sequence U(1, -1) with discriminant 5 (A000045). Values of p dividing the Pell quotient will be found under A238736, while for the Fibonacci quotient it is known that there is no such p < 9.7*10^14.
The interest in this family of number-theoretic quotients derives from H. C. Williams, "Some formulas concerning the fundamental unit of a real quadratic field," p. 440, which proves a formula connecting the present quotient with the Fermat quotient base 2 (A007663), the Fermat quotient base 3 (A146211), and the harmonic number H(floor(p/12)) (see the Formula section below). As is well known, the vanishing of each of these Fermat quotients is a necessary condition for the failure of the first case of Fermat's Last Theorem (see discussions under A001220 and A014127); and a corresponding result concerning this type of harmonic number was proved by Dilcher and Skula. Thus, the vanishing mod p of the quotient based on U(4, 1) is also a necessary condition for the failure of the first case of Fermat's Last Theorem.
The pioneering computation for this quotient appears to be that of Elsenhans and Jahnel, "The Fibonacci sequence modulo p^2," p. 5, who report 103 as the only value of a(n) < 10^9. Extending the search to p < 2.5*10^10 has found only one further solution, 2297860813.
Let LucasQuotient(p) = A001353(p - (3/p))/p, q_2 = (2^(p-1) - 1)/p = A007663(p) be the corresponding Fermat quotient of base 2, q_3 = (3^(p-1) - 1)/p = A146211(p) be the corresponding Fermat quotient of base 3, H(floor(p/12)) be a harmonic number. Then Williams (1991) shows that 6*(3/p)*LucasQuotient(p) == -6*q_2 - 3*q_3 - 2*H(floor(p/12)) (mod p).
Also with an initial 2, primes p such that p^2 divides A001353(p - Kronecker(12,p)) (note that 12 is the discriminant of the characteristic polynomial of A001353, x^2 - 4x + 1). - Jianing Song, Jul 28 2018

Examples

			LucasQuotient(103) = 103*851367555454046677501642274766916900879231854719584128208.
		

Crossrefs

Programs

  • Mathematica
    The following criteria are equivalent:
    PrimeQ[p] &&
      Mod[(MatrixPower[{{1,2},{1,3}}, p-JacobiSymbol[3,p]-1].{{1},{1}})[[2,1]], p^2]==0
    PrimeQ[p] && Mod[Last[LinearRecurrence[{4,-1},{0,1}, p-JacobiSymbol[3,p]+1]], p^2]==0
  • PARI
    isprime(p) && (Mod([2, 2; 1, 0], p^2)^(p-kronecker(3, p)))[2, 1]==0 \\ This test, which was used to find the second member of this sequence, is based on the test for A238736 devised by Charles R Greathouse IV

A298211 Smallest n such that A001353(a(n)) == 0 (mod n), i.e., x=A001075(a(n)) and y=A001353(a(n)) is the fundamental solution of the Pell equation x^2 - 3*(n*y)^2 = 1.

Original entry on oeis.org

1, 2, 3, 2, 3, 6, 4, 4, 9, 6, 5, 6, 6, 4, 3, 8, 9, 18, 5, 6, 12, 10, 11, 12, 15, 6, 27, 4, 15, 6, 16, 16, 15, 18, 12, 18, 18, 10, 6, 12, 7, 12, 11, 10, 9, 22, 23, 24, 28, 30, 9, 6, 9, 54, 15, 4, 15, 30, 29, 6, 30, 16, 36, 32, 6, 30, 17, 18, 33, 12, 7, 36, 18, 18, 15
Offset: 1

Views

Author

A.H.M. Smeets, Jan 15 2018

Keywords

Comments

The fundamental solution of the Pell equation x^2 - 3*(n*y)^2 = 1 is the smallest solution of x^2 - 3*y^2 = 1 satisfying y == 0 (mod n).
For primes p > 2, 2^p-1 is a Mersenne prime if and only if a(2^p-1) = 2^(p-1). For example, a(7) = 4, a(31) = 16, a(127) = 64, but a(2047) = 495 < 1024. - Jianing Song, Jun 02 2022

References

  • Michael J. Jacobson, Jr. and Hugh C. Williams, Solving the Pell Equation, Springer, 2009, pages 1-17.

Crossrefs

Programs

  • Mathematica
    With[{s = Array[ChebyshevU[-1 + #, 2] &, 75]}, Table[FirstPosition[s, k_ /; Divisible[k, n]][[1]], {n, Length@ s}]] (* Michael De Vlieger, Jan 15 2018, after Eric W. Weisstein at A001353 *)
  • Python
    xf, yf = 2, 1
    x, n = 2*xf, 0
    while n < 20000:
        n = n+1
        y1, y0, i = 0, yf, 1
        while y0%n != 0:
            y1, y0, i = y0, x*y0-y1, i+1
        print(n, i)

Formula

a(n) <= n.
a(A038754(n)) = A038754(n).
A001075(a(n)) = A002350(3*n^2).
A001353(a(n)) = A002349(3*n^2).
if n | m then a(n) | a(m).
a(3^m) = 3^m and a(2*3^m) = 2*3^m for m>=0.
In general: if p is prime and p == 3 (mod 4) then: a(n) = n iff n = p^m or n = 2*p^m, for m>=0.
a(k*A005385(n)) = a(k)*A005384(n) for n>2 and k > 0 (conjectured).
a(p) | (p-A091338(p)) for p is an odd prime. - A.H.M. Smeets, Aug 02 2018
From Jianing Song, Jun 02 2022: (Start)
a(p) | (p-A091338(p))/2 for p is an odd prime > 3.
a(p^e) = a(p)*p^(e-r) for e >= r, where r is the largest number such that a(p^r) = a(p). r can be greater than 1, for p = 2, 103, 2297860813 (Cf. A238490).
If gcd(m,n) = 1, then a(m*n) = lcm(a(m),a(n)). (End)

A338008 Odd composite integers m such that A001353(m)^2 == 1 (mod m).

Original entry on oeis.org

35, 65, 91, 209, 455, 533, 595, 629, 679, 901, 923, 989, 1001, 1241, 1295, 1495, 1547, 1729, 1769, 1855, 1961, 1991, 2015, 2345, 2431, 2509, 2555, 2639, 2701, 2795, 2911, 3007, 3059, 3367, 3439, 3535, 3869, 3977, 4277, 4823, 5249, 5291, 5551, 5719, 5777
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 06 2020

Keywords

Comments

For a, b integers, the generalized Lucas sequence is defined by the relation U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1.
This sequence satisfies the relation U(p)^2 == 1 for p prime and b=1,-1.
The composite numbers with this property may be called weak generalized Lucas pseudoprimes of parameters a and b.
The current sequence is defined for a=4 and b=1.

References

  • D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020).

Crossrefs

Cf. A338007 (a=3, b=1), A338009 (a=5, b=1), A338010 (a=6, b=1), A338011 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3, 6000, 2], CompositeQ[#] && Divisible[ChebyshevU[#-1, 2]*ChebyshevU[#-1, 2] - 1, #] &]

A161158 a(n) = A003696(n+1)/A001353(n+1).

Original entry on oeis.org

1, 14, 161, 1792, 19809, 218638, 2412353, 26614784, 293628097, 3239445006, 35739069409, 394290020096, 4349990523425, 47991114171406, 529460241815169, 5841251080892416, 64443392518654337, 710969410782059534
Offset: 0

Views

Author

R. J. Mathar, Jun 03 2009

Keywords

Comments

Proposed by R. Guy in the seqfan list Mar 28 2009.
With an offset of 1, this sequence is the case P1 = 14, P2 = 32, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 27 2014

Crossrefs

Programs

  • GAP
    a:=[1,14,161,1792];; for n in [5..20] do a[n]:=14*a[n-1]-34*a[n-2] +14*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Dec 24 2019
  • Magma
    I:=[1,14,161,1792]; [n le 4 select I[n] else 14*Self(n-1)-34*Self(n-2) +14*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 28 2014
    
  • Maple
    seq(simplify( ChebyshevU(n, (4+sqrt(2))/2)*ChebyshevU(n, (4-sqrt(2))/2) ), n = 0 .. 20); # G. C. Greubel, Dec 24 2019
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-14x+34x^2-14x^3+x^4), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)
    Table[Simplify[ChebyshevU[n, (4+Sqrt[2])/2]*ChebyshevU[n, (4-Sqrt[2])/2]], {n, 0, 20}] (* G. C. Greubel, Dec 24 2019 *)
  • PARI
    vector(21, n, round(polchebyshev(n-1, 2, (4+sqrt(2))/2)*polchebyshev(n-1, 2, (4-sqrt(2))/2)) ) \\ G. C. Greubel, Dec 24 2019
    
  • Sage
    [round(chebyshev_U(n,(4+sqrt(2))/2)*chebyshev_U(n,(4-sqrt(2))/2)) for n in (0..20)] # G. C. Greubel, Dec 24 2019
    

Formula

a(n) = 14*a(n-1) -34*a(n-2) +14*a(n-3) -a(n-4).
G.f.: (1-x^2)/(1-14*x+34*x^2-14*x^3+x^4).
From Peter Bala, Apr 27 2014: (Start)
The following remarks assume an offset of 1.
a(n) = (1/sqrt(17))*( T(n,(7 + sqrt(17))/2) - T(n,(7 - sqrt(17))/2) ), where T(n,x) is the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n,M), where M is the 2 X 2 matrix [0, -8; 1, 7].
a(n) = U(n-1,1/2*(4 + sqrt(2)))*U(n-1,1/2*(4 - sqrt(2))), where U(n,x) is the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

A337778 Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 4 (mod m), where U(m)=A001353(m) and V(m)=A003500(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=4 and b=1, respectively.

Original entry on oeis.org

209, 455, 901, 923, 989, 1295, 1729, 1855, 2015, 2345, 2639, 2701, 2795, 2911, 3007, 3439, 3535, 4823, 5291, 5719, 6061, 6767, 6989, 7421, 8569, 9503, 9869, 10439, 10609, 11041, 11395, 11951, 13133, 13529, 13735, 13871, 14701, 14839, 15505, 15841, 17119, 17815
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 20 2020

Keywords

Comments

For a, b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b.The current sequence is defined for a=4 and b=1.

Crossrefs

Similar sequences: A337627 (a=4, b=-1).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 2] - 4, #] && Divisible[ChebyshevU[#-1, 2]*ChebyshevU[#-1, 2] - 1, #] &]

Extensions

More terms from Amiram Eldar, Sep 21 2020

A219021 Sum of cubes of first n terms of Lucas sequence U(4,1) (A001353) divided by sum of their first powers.

Original entry on oeis.org

1, 13, 172, 2356, 32661, 454329, 6325816, 88099144, 1227032521, 17090245381, 238035989412, 3315412063548, 46177727142301, 643172746439665, 8958240642814960, 124772195953666576, 1737852501591502353, 24205162822158610557, 337134426993071036956, 4695676815022772628676, 65402340983109050660389
Offset: 1

Views

Author

Max Alekseyev, Nov 09 2012

Keywords

Comments

For a Lucas sequence U(k,1), the sum of the cubes of the first n terms is divisible by the sum of the first n terms. This sequence corresponds to the case of k=4.

Crossrefs

Programs

  • Magma
    I:=[1,13,172,2356,32661]; [n le 5 select I[n] else 19*Self(n-1)-76*Self(n-2)+76*Self(n-3)-19*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Dec 09 2015
  • Mathematica
    CoefficientList[Series[(1 - 6 x + x^2)/((1 - x) (1 - 14 x + x^2) (1 - 4 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 09 2015 *)
  • PARI
    Vec(x*(1-6*x+x^2)/((1-x)*(1-14*x+x^2)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, Dec 08 2015
    

Formula

a(n) = Sum_{k=1..n} A001353(k)^3 / Sum_{k=1..n} A001353(k).
a(n) = Sum_{k=1..n} A001353(k)^3 / A061278(n).
From Colin Barker, Dec 08 2015: (Start)
a(n) = 19*a(n-1)-76*a(n-2)+76*a(n-3)-19*a(n-4)+a(n-5) for n>5.
G.f.: x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)*(1-4*x+x^2)).
(End)

A306825 Primitive part of A001353(n).

Original entry on oeis.org

1, 4, 15, 14, 209, 13, 2911, 194, 2703, 181, 564719, 193, 7865521, 2521, 34945, 37634, 1525870529, 2701, 21252634831, 37441, 6779137, 489061, 4122901604639, 37633, 274758906449, 6811741, 19726764303, 7263361, 11140078609864049, 40321, 155161278879431551
Offset: 1

Views

Author

Jianing Song, Mar 16 2019

Keywords

Comments

A prime p is called a unique-period prime in base b if there is no other prime q such that the period length of 1/q is equal to that of 1/p. If q = a(2p) = A001353(2*p)/(4*A001353(p)) = ((2 + sqrt(3))^p + (2 - sqrt(3))^p)/4 is prime (this happens for p = 3, 5, 7, 11, 13, 17, 19, 79, 151, 199, 233, 251, 317, ...), where p is an odd prime, then q is a unique-period prime in base b = (sqrt(12*q^2 - 3) - 1)/2 (1/q has period length 3) as well as in base b' = (sqrt(12*q^2 - 3) + 1)/2 (1/q has period length 6). For example, a(6) = 13 is prime, so 13 is the only prime whose reciprocal has period length 3 in base 22 and the only prime whose reciprocal has period length 6 in base 23. Compare: If q = A000129(p) = A008555(p), then q is a unique-period prime in base b = sqrt(2*q^2 - 1) (1/q has period length 4).
By Lucas-Lehmer test, p is a Mersenne prime > 3 if and only if the smallest k such that p divides a(k) is k = (p - 1)/2.
For primes p, p^2 divides a(k) for some k if and only if p = 2 or p is in A238490. If p > 2, the only possible values for k are the divisors of (p - Legendre(3,p))/2 (e.g., 103^2 divides a(52) = 53028360515521 = 103^2 * 4998431569).
Conjecturally there must be infinitely many primes p such that a(p) is prime, but no such p is known. [By the formula below, there is no such p. - Jianing Song, Oct 31 2024]

Examples

			For n = 8 we have: a(1) = A001353(1), a(1)*a(2) = A001353(2), a(1)*a(2)*a(4) = A001353(4), a(1)*a(2)*a(4)*a(8) = A001353(8). The solution is a(1) = 1, a(2) = 4, a(4) = 14 and a(8) = 194.
		

Crossrefs

Similar sequences: A061446, A008555.

Programs

  • PARI
    b(n) = if(n==1, [1], my(v=vector(n)); v[1]=1; v[2]=4; for(i=3, n, v[i]=4*v[i-1]-v[i-2]); v)
    a(n) = my(d=divisors(n)); prod(i=1, #d, (b(n)[d[i]])^moebius(n/d[i]))

Formula

Product_{d|n} a(d) = A001353(n), that is, a(n) = A001353(n)/(Product_{dA001353(d)^mu(n/d), where mu = A008683.
a(n) = A309040(2*n) for even n; A309040(n)*A309040(2*n) for odd n > 1. - Jianing Song, Oct 31 2024
Showing 1-10 of 190 results. Next