cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359990 Array read by antidiagonals: T(m,n) is the number of edge cuts in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 3, 11, 3, 7, 105, 105, 7, 15, 919, 3665, 919, 15, 31, 7713, 123215, 123215, 7713, 31, 63, 63351, 4051679, 16222021, 4051679, 63351, 63, 127, 514321, 131630449, 2108725953, 2108725953, 131630449, 514321, 127, 255, 4148839, 4248037953, 272179739279, 1089224690733, 272179739279, 4248037953, 4148839, 255
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2023

Keywords

Comments

The complement of an edge cut is a disconnected spanning subgraph (spanning meaning that the graph has the same vertex set although some vertices may be of degree zero).

Examples

			Table starts:
========================================================
m\n|  1     2         3            4               5
---+----------------------------------------------------
1  |  0     1         3            7              15 ...
2  |  1    11       105          919            7713 ...
3  |  3   105      3665       123215         4051679 ...
4  |  7   919    123215     16222021      2108725953 ...
5  | 15  7713   4051679   2108725953   1089224690733 ...
6  | 31 63351 131630449 272179739279 560238057496423 ...
   ...
		

Crossrefs

Rows 1..3 are A000225(n-1), A359987, A359988.
Main diagonal is A359989.
Cf. A141387, A359993 (connected spanning subgraphs).

Formula

T(m,n) = 2^B(m,n) - A359993(m,n) where B(m,n) = 2*m*n - m - n = A141387(n+m-2, n-1) is the number of edges in the graph.
T(m,n) = T(n,m).

A360194 Array read by antidiagonals: T(m,n) is the number of acyclic spanning subgraphs in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 4, 15, 4, 8, 112, 112, 8, 16, 836, 3102, 836, 16, 32, 6240, 85818, 85818, 6240, 32, 64, 46576, 2373870, 8790016, 2373870, 46576, 64, 128, 347648, 65664106, 900013270, 900013270, 65664106, 347648, 128, 256, 2594880, 1816344222, 92146956300, 341008617408, 92146956300, 1816344222, 2594880, 256
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2023

Keywords

Comments

Acyclic spanning subgraphs are also called spanning forests.

Examples

			Table starts:
========================================================
m\n|  1     2        3           4               5
---+----------------------------------------------------
1  |  1     2        4           8              16 ...
2  |  2    15      112         836            6240 ...
3  |  4   112     3102       85818         2373870 ...
4  |  8   836    85818     8790016       900013270 ...
5  | 16  6240  2373870   900013270    341008617408 ...
6  | 32 46576 65664106 92146956300 129187804977182 ...
   ...
		

Crossrefs

Rows 1..4 are A000079(n-1), A022026(n-1), A158450, A360195.
Main diagonal is A080691.
Cf. A116469 (spanning trees), A359993 (connected spanning subgraphs), A360202.

A359992 Number of connected spanning subgraphs in the n X n grid graph.

Original entry on oeis.org

1, 5, 431, 555195, 10286937043, 2692324030864335, 9852929684161379901975, 501079193080617800221189943995, 352690403996687922642590703716802346343, 3426297680513758764075706102615040790667832304415, 458508006189588425325361635000918336126387961057365005349963
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2023

Keywords

Comments

For n > 1, a(n) is the number of connected edge covers in the n X n grid graph.

Examples

			The a(2) = 5 connected spanning subgraphs are the following subgraphs and their rotations and reflections.
   o---o   o---o
   |       |   |
   o---o   o---o
		

Crossrefs

Main diagonal of A359993.

Formula

a(n) = A053765(n) - A359989(n).

A158453 Number of connected spanning subgraphs in 3 X n grid.

Original entry on oeis.org

1, 23, 431, 7857, 142625, 2587279, 46929343, 851213073, 15439417633, 280042119887, 5079439221503, 92131506968913, 1671092849279201, 30310492056413839, 549775513106272063, 9971897330025100689, 180871526632046468257, 3280670474584477332047, 59505213248435614382975
Offset: 1

Views

Author

Alois P. Heinz, Mar 19 2009

Keywords

Crossrefs

Column k=3 of A359993.

Programs

  • Maple
    a:= n-> (Matrix([[23, 1, 0, 1/4]]). Matrix(4, (i, j)-> `if`(i=j-1, 1,
               `if`(j=1, [22, -73, 54, -8][i], 0)))^n)[1, 3]:
    seq(a(n), n=1..20);

Formula

G.f.: (2*x^3-x^2-x) / (54*x^3-73*x^2-1+22*x-8*x^4).

A359991 Number of connected spanning subgraphs in the 4 X n grid graph.

Original entry on oeis.org

1, 105, 7857, 555195, 38757695, 2698167665, 187715481077, 13057666054455, 908271228919067, 63177423571626685, 4394479113198329137, 305669914361091938915, 21261697652022553831895, 1478914849135091196256585, 102869919107895518546358701
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2023

Keywords

Crossrefs

Row 4 of A359993.

Formula

G.f.: x*(1 - 261*x^2 + 2190*x^3 - 5940*x^4 + 5400*x^5 - 672*x^6 - 960*x^7 + 256*x^8)/(1 - 105*x + 2907*x^2 - 33255*x^3 + 183316*x^4 - 519800*x^5 + 778624*x^6 - 610800*x^7 + 237312*x^8 - 39680*x^9 + 2048*x^10).
Showing 1-5 of 5 results.