cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A212798 Row 3 of array in A212796.

Original entry on oeis.org

3, 294, 11664, 367500, 10609215, 292626432, 7839321861, 205683135000, 5312031978672, 135495143785470, 3421536337406913, 85686871818240000, 2130987634616000199, 52682956706683197258, 1295799745309605101520, 31730077997731715070000
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Comments

A linear divisibility sequence of order 10. - Peter Bala, May 04 2014

Crossrefs

Programs

  • Maple
    seq(simplify(n/3*(-2 + ( (5 + sqrt(21))/2 )^n + ( (5 - sqrt(21))/2 )^n)^2), n = 1..14); # Peter Bala, May 04 2014
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXCk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
            grids.append((i + k - 1, i))
        return grids
    def A212798(n):
        if n == 1: return 3
        if n == 2: return 294
        universe = make_CnXCk(n, 3)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A212798(n) for n in range(1, 30)])  # Seiichi Manyama, Nov 22 2020

Formula

From Peter Bala, May 04 2014: (Start)
a(n) = n/3*(-2 + ( (5 + sqrt(21))/2 )^n + ( (5 - sqrt(21))/2 )^n)^2 = 3*n*A054493(n-1)^2.
O.g.f.: 3*(x^8 + 40*x^7 - 665*x^6 - 866*x^5 + 5626*x^4 - 866*x^3 - 665*x^2 + 40*x + 1)/( (x - 1)^2*(x^2 - 5*x + 1)^2*(x^2 - 23*x + 1)^2 ). (End)

Extensions

More terms from Peter Bala, May 04 2014

A212799 Row 4 of array in A212796.

Original entry on oeis.org

4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, 3771854305099776, 344499209234302500, 31074298464967845120, 2774871814779003772844, 245741556726521856000000, 21611621448116558812137652, 1889376666754339457990201088, 164334311374716912516773437500
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(6*n-4)*n*Product[Sin[j*Pi/4]^2 + Sin[k*Pi/n]^2, {j,1,3}, {k,1,n-1}], {n,1,20}]//Round (* Vaclav Kotesovec, Feb 26 2021 *)
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXCk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
            grids.append((i + k - 1, i))
        return grids
    def A212799(n):
        if n == 1: return 4
        if n == 2: return 2304
        universe = make_CnXCk(4, n)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A212799(n) for n in range(1, 8)])  # Seiichi Manyama, Nov 22 2020

Formula

From Vaclav Kotesovec, Feb 26 2021: (Start)
a(n) ~ (21 + 12*sqrt(3) + 2*sqrt(2*(97 + 56*sqrt(3))))^n * n/4.
G.f.: 4*x*(1 + 310*x - 33278*x^2 + 785814*x^3 + 4923451*x^4 - 476492324*x^5 + 8394222196*x^6 - 74272031652*x^7 + 371582629705*x^8 - 981246223862*x^9 + 441533151262*x^10 + 6161037199338*x^11 - 23802532730757*x^12 + 46995963516168*x^13 - 58240430817576*x^14 + 46995963516168*x^15 - 23802532730757*x^16 + 6161037199338*x^17 + 441533151262*x^18 - 981246223862*x^19 + 371582629705*x^20 - 74272031652*x^21 + 8394222196*x^22 - 476492324*x^23 + 4923451*x^24 + 785814*x^25 - 33278*x^26 + 310*x^27 + x^28)/ ((1 - x)^2*(1 - 14*x + x^2)^2*(1 - 6*x + x^2)^2*(1 - 4*x + x^2)^2* (1 - 84*x + 230*x^2 - 84*x^3 + x^4)^2*(1 - 24*x + 50*x^2 - 24*x^3 + x^4)^2). (End)

Extensions

a(10)-a(15) from Seiichi Manyama, Nov 22 2020

A212800 Number of spanning trees of the (n,n)-torus grid graph.

Original entry on oeis.org

1, 32, 11664, 42467328, 1562500000000, 587312954081280000, 2266101334892340404752384, 89927963805390785392395474173952, 36735015407753190053984060991247792275456, 154528563849617762057150663767149772800000000000000, 6695315138840257072470706538467584763944601124280722177130496
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Comments

Main diagonal of array in A212796.

Crossrefs

Programs

  • Mathematica
    Table[n^2 * Product[4*Sin[j*Pi/n]^2 + 4*Sin[k*Pi/n]^2, {k, 1, n-1}, {j, 1, n-1}], {n, 1, 12}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)

Formula

a(n) ~ Gamma(1/4)^4 * exp(4*G*n^2/Pi) / (16 * Pi^3), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021

Extensions

More terms from Eric W. Weisstein, May 10 2017

A358810 Number of spanning trees in C_5 X C_n.

Original entry on oeis.org

5, 16810, 10609215, 4381392020, 1562500000000, 522217835532030, 168437773747672835, 53095647535975155240, 16463182598208445194045, 5040439500800000000000000, 1527650417538030913166754055, 459160235715332056282793308860
Offset: 1

Views

Author

Seiichi Manyama, Dec 02 2022

Keywords

Crossrefs

Row 5 of A212796.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
    a(n) = T(5, n);

A358811 Number of spanning trees in C_6 X C_n.

Original entry on oeis.org

6, 117600, 292626432, 428652000000, 522217835532030, 587312954081280000, 633426582213424399722, 665880333340217184000000, 687776414074843514847584256, 701129416495732552572667500000, 707405677027691828669857196745186
Offset: 1

Views

Author

Seiichi Manyama, Dec 02 2022

Keywords

Crossrefs

Row 6 of A212796.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
    a(n) = T(6, n);

A340560 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*sin(b*Pi/k)^2).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 49, 49, 1, 1, 288, 1296, 288, 1, 1, 1681, 30625, 30625, 1681, 1, 1, 9800, 707281, 2654208, 707281, 9800, 1, 1, 57121, 16257024, 219069601, 219069601, 16257024, 57121, 1, 1, 332928, 373301041, 17860500000, 62500000000, 17860500000, 373301041, 332928, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 11 2021

Keywords

Examples

			Square array begins:
  1,    1,      1,         1,           1, ...
  1,    8,     49,       288,        1681, ...
  1,   49,   1296,     30625,      707281, ...
  1,  288,  30625,   2654208,   219069601, ...
  1, 1681, 707281, 219069601, 62500000000, ...
		

Crossrefs

Rows and columns 1..2 give A000012, A001108.
Main diagonal gives A340562.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))}

Formula

T(n,k) = T(k,n).
T(n,k) = A212796(n,k)/(n*k).

A212797 Number of spanning trees in C_2 X C_n.

Original entry on oeis.org

2, 32, 294, 2304, 16810, 117600, 799694, 5326848, 34928082, 226195360, 1450199542, 9220780800, 58221203066, 365440965344, 2282085037470, 14187697422336, 87860208024994, 542209573735200, 3335797263902918, 20465738163774720, 125247216613782858
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Comments

From Harry Richman and Alois P. Heinz, Jan 31 2023: (Start)
Row 2 of array in A212796.
a(n) is a divisibility sequence, i.e., if m divides n then a(m) divides a(n), since A001108 is one. (End)

Crossrefs

Programs

  • PARI
    default(realprecision, 120);
    {a(n) = round(n*2^(2*n-1)*prod(k=1, n-1, 1+sin(k*Pi/n)^2))} \\ Seiichi Manyama, Jan 13 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(2*x*deriv(x*(1+x)/((1-x)*(1-6*x+x^2)))) \\ Seiichi Manyama, Jan 13 2021

Formula

G.f.: 2*x*(1+2*x-14*x^2+2*x^3+x^4)/((x-1)^2*(1-6*x+x^2)^2) . - R. J. Mathar, Apr 16 2018
Conjecture: a(n) = 16*A001109(n+1) +3*A001109(n) -16*(A144133(n)-6*A144133(n-1)) -n = 3*A144133(n-1) -2*A144133(n-2) +3*A144133(n-3) -n. - R. J. Mathar, Apr 16 2018
From Seiichi Manyama, Jan 13 2021: (Start)
a(n) = 2 * n * A001108(n).
a(n) = 14*a(n-1) - 63*a(n-2) + 100*a(n-3) - 63*a(n-4) + 14*a(n-5) - a(n-6) for n > 6. (End)

Extensions

More terms from Seiichi Manyama, Jan 13 2021

A358812 Number of spanning trees in C_7 X C_n.

Original entry on oeis.org

7, 799694, 7839321861, 40643137651228, 168437773747672835, 633426582213424399722, 2266101334892340404752384, 7871822605982542067643202616, 26818349084747196820449212376063, 90098172307754257628918141363625670, 299464785482715726798502702429093755197
Offset: 1

Views

Author

Seiichi Manyama, Dec 02 2022

Keywords

Crossrefs

Row 7 of A212796.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
    a(n) = T(7, n);

A358813 Number of spanning trees in C_8 X C_n.

Original entry on oeis.org

8, 5326848, 205683135000, 3771854305099776, 53095647535975155240, 665880333340217184000000, 7871822605982542067643202616, 89927963805390785392395474173952, 1005049441217682470864686231147005000
Offset: 1

Views

Author

Seiichi Manyama, Dec 02 2022

Keywords

Crossrefs

Row 8 of A212796.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
    a(n) = T(8, n);

A358814 Number of spanning trees in C_9 X C_n.

Original entry on oeis.org

9, 34928082, 5312031978672, 344499209234302500, 16463182598208445194045, 687776414074843514847584256, 26818349084747196820449212376063, 1005049441217682470864686231147005000, 36735015407753190053984060991247792275456
Offset: 1

Views

Author

Seiichi Manyama, Dec 02 2022

Keywords

Crossrefs

Row 9 of A212796.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
    a(n) = T(9, n);
Showing 1-10 of 11 results. Next