Original entry on oeis.org
3, 294, 11664, 367500, 10609215, 292626432, 7839321861, 205683135000, 5312031978672, 135495143785470, 3421536337406913, 85686871818240000, 2130987634616000199, 52682956706683197258, 1295799745309605101520, 31730077997731715070000
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..200
- Germain Kreweras, Complexite et circuits Euleriens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210, Parag. 4.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (58,-1131,8700,-29493,43734,-29493,8700,-1131,58,-1).
-
seq(simplify(n/3*(-2 + ( (5 + sqrt(21))/2 )^n + ( (5 - sqrt(21))/2 )^n)^2), n = 1..14); # Peter Bala, May 04 2014
-
# Using graphillion
from graphillion import GraphSet
def make_CnXCk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
grids.append((i + k - 1, i))
return grids
def A212798(n):
if n == 1: return 3
if n == 2: return 294
universe = make_CnXCk(n, 3)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A212798(n) for n in range(1, 30)]) # Seiichi Manyama, Nov 22 2020
Original entry on oeis.org
4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, 3771854305099776, 344499209234302500, 31074298464967845120, 2774871814779003772844, 245741556726521856000000, 21611621448116558812137652, 1889376666754339457990201088, 164334311374716912516773437500
Offset: 1
-
Table[2^(6*n-4)*n*Product[Sin[j*Pi/4]^2 + Sin[k*Pi/n]^2, {j,1,3}, {k,1,n-1}], {n,1,20}]//Round (* Vaclav Kotesovec, Feb 26 2021 *)
-
# Using graphillion
from graphillion import GraphSet
def make_CnXCk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
grids.append((i + k - 1, i))
return grids
def A212799(n):
if n == 1: return 4
if n == 2: return 2304
universe = make_CnXCk(4, n)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A212799(n) for n in range(1, 8)]) # Seiichi Manyama, Nov 22 2020
A212800
Number of spanning trees of the (n,n)-torus grid graph.
Original entry on oeis.org
1, 32, 11664, 42467328, 1562500000000, 587312954081280000, 2266101334892340404752384, 89927963805390785392395474173952, 36735015407753190053984060991247792275456, 154528563849617762057150663767149772800000000000000, 6695315138840257072470706538467584763944601124280722177130496
Offset: 1
-
Table[n^2 * Product[4*Sin[j*Pi/n]^2 + 4*Sin[k*Pi/n]^2, {k, 1, n-1}, {j, 1, n-1}], {n, 1, 12}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
A358810
Number of spanning trees in C_5 X C_n.
Original entry on oeis.org
5, 16810, 10609215, 4381392020, 1562500000000, 522217835532030, 168437773747672835, 53095647535975155240, 16463182598208445194045, 5040439500800000000000000, 1527650417538030913166754055, 459160235715332056282793308860
Offset: 1
-
default(realprecision, 120);
T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
a(n) = T(5, n);
A358811
Number of spanning trees in C_6 X C_n.
Original entry on oeis.org
6, 117600, 292626432, 428652000000, 522217835532030, 587312954081280000, 633426582213424399722, 665880333340217184000000, 687776414074843514847584256, 701129416495732552572667500000, 707405677027691828669857196745186
Offset: 1
-
default(realprecision, 120);
T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
a(n) = T(6, n);
A340560
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*sin(b*Pi/k)^2).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 49, 49, 1, 1, 288, 1296, 288, 1, 1, 1681, 30625, 30625, 1681, 1, 1, 9800, 707281, 2654208, 707281, 9800, 1, 1, 57121, 16257024, 219069601, 219069601, 16257024, 57121, 1, 1, 332928, 373301041, 17860500000, 62500000000, 17860500000, 373301041, 332928, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
1, 8, 49, 288, 1681, ...
1, 49, 1296, 30625, 707281, ...
1, 288, 30625, 2654208, 219069601, ...
1, 1681, 707281, 219069601, 62500000000, ...
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))}
A212797
Number of spanning trees in C_2 X C_n.
Original entry on oeis.org
2, 32, 294, 2304, 16810, 117600, 799694, 5326848, 34928082, 226195360, 1450199542, 9220780800, 58221203066, 365440965344, 2282085037470, 14187697422336, 87860208024994, 542209573735200, 3335797263902918, 20465738163774720, 125247216613782858
Offset: 1
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210, Parag. 4.
- Index entries for linear recurrences with constant coefficients, signature (14,-63,100,-63,14,-1).
-
default(realprecision, 120);
{a(n) = round(n*2^(2*n-1)*prod(k=1, n-1, 1+sin(k*Pi/n)^2))} \\ Seiichi Manyama, Jan 13 2021
-
my(N=66, x='x+O('x^N)); Vec(2*x*deriv(x*(1+x)/((1-x)*(1-6*x+x^2)))) \\ Seiichi Manyama, Jan 13 2021
A358812
Number of spanning trees in C_7 X C_n.
Original entry on oeis.org
7, 799694, 7839321861, 40643137651228, 168437773747672835, 633426582213424399722, 2266101334892340404752384, 7871822605982542067643202616, 26818349084747196820449212376063, 90098172307754257628918141363625670, 299464785482715726798502702429093755197
Offset: 1
-
default(realprecision, 120);
T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
a(n) = T(7, n);
A358813
Number of spanning trees in C_8 X C_n.
Original entry on oeis.org
8, 5326848, 205683135000, 3771854305099776, 53095647535975155240, 665880333340217184000000, 7871822605982542067643202616, 89927963805390785392395474173952, 1005049441217682470864686231147005000
Offset: 1
-
default(realprecision, 120);
T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
a(n) = T(8, n);
A358814
Number of spanning trees in C_9 X C_n.
Original entry on oeis.org
9, 34928082, 5312031978672, 344499209234302500, 16463182598208445194045, 687776414074843514847584256, 26818349084747196820449212376063, 1005049441217682470864686231147005000, 36735015407753190053984060991247792275456
Offset: 1
-
default(realprecision, 120);
T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)));
a(n) = T(9, n);
Showing 1-10 of 11 results.
Comments