cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A212796 Square array read by antidiagonals: T(m,n) = number of spanning trees in C_m X C_n.

Original entry on oeis.org

1, 2, 2, 3, 32, 3, 4, 294, 294, 4, 5, 2304, 11664, 2304, 5, 6, 16810, 367500, 367500, 16810, 6, 7, 117600, 10609215, 42467328, 10609215, 117600, 7, 8, 799694, 292626432, 4381392020, 4381392020, 292626432, 799694, 8, 9, 5326848, 7839321861, 428652000000, 1562500000000, 428652000000, 7839321861, 5326848, 9
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Examples

			Array begins:
  1,    2,      3,        4,          5,            6               7, ...
  2,   32,    294,     2304,      16810,       117600,         799694, ...
  3,  294,  11664,   367500,   10609215,    292626432,     7839321861, ...
  4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, ...
  ...
		

Crossrefs

Rows and columns 1..10 give A000027, A212797, A212798, A212799, A358810, A358811, A358812, A358813, A358814, A358815.
Diagonal gives A212800.

Programs

  • Maple
    Digits:=200;
    T:=(m,n)->round(Re(evalf(simplify(expand(
    m*n*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1))))));
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))} \\ Seiichi Manyama, Jan 13 2021

Formula

T(m,n) = m*n*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1).

A358869 Number of (undirected) paths in the graph C_5 X C_n.

Original entry on oeis.org

6690, 324570, 10489660, 276182500, 6486444750, 141606011050, 2938679135800, 58759814756160, 1142125726154350, 21713533582158110, 405578743418707380, 7468021173224848600, 135906384557097211050, 2449354951706961634050, 43785800216111451354800, 777390470051273329332440, 13722022446524862502553730
Offset: 2

Views

Author

Seiichi Manyama, Dec 03 2022

Keywords

Crossrefs

Extensions

a(8)-a(18) from Andrew Howroyd, Jan 28 2023
a(2) prepended by Ed Wynn, Jul 07 2023

A358868 Number of (undirected) Hamiltonian paths in the graph C_5 X C_n.

Original entry on oeis.org

1160, 18240, 287160, 2955700, 29861820, 263890620, 2271291760, 18578622510, 148166461700, 1154270708140, 8816903664840, 66466271481610, 493981029964240, 3639806487902700, 26549365603051040, 192467514066590100, 1385199533746259460, 9923453811044261140, 70715845300102361800
Offset: 2

Views

Author

Seiichi Manyama, Dec 03 2022

Keywords

Crossrefs

Extensions

More terms from Ed Wynn, Jul 07 2023

A358855 Number of (undirected) cycles in the graph C_5 X C_n.

Original entry on oeis.org

7298, 132089, 2183490, 34846271, 548520502, 8593998133, 134605124804, 2112734282875, 33277625395316, 526401223244097, 8365394600819118, 133560895142858179, 2142023381577621160, 34497747586243864061, 557716750350292506722, 9047143455744392381123
Offset: 3

Views

Author

Seiichi Manyama, Dec 03 2022

Keywords

Crossrefs

Extensions

a(9)-a(18) from Andrew Howroyd, Jan 28 2023
Showing 1-4 of 4 results.