cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A212796 Square array read by antidiagonals: T(m,n) = number of spanning trees in C_m X C_n.

Original entry on oeis.org

1, 2, 2, 3, 32, 3, 4, 294, 294, 4, 5, 2304, 11664, 2304, 5, 6, 16810, 367500, 367500, 16810, 6, 7, 117600, 10609215, 42467328, 10609215, 117600, 7, 8, 799694, 292626432, 4381392020, 4381392020, 292626432, 799694, 8, 9, 5326848, 7839321861, 428652000000, 1562500000000, 428652000000, 7839321861, 5326848, 9
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Examples

			Array begins:
  1,    2,      3,        4,          5,            6               7, ...
  2,   32,    294,     2304,      16810,       117600,         799694, ...
  3,  294,  11664,   367500,   10609215,    292626432,     7839321861, ...
  4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, ...
  ...
		

Crossrefs

Rows and columns 1..10 give A000027, A212797, A212798, A212799, A358810, A358811, A358812, A358813, A358814, A358815.
Diagonal gives A212800.

Programs

  • Maple
    Digits:=200;
    T:=(m,n)->round(Re(evalf(simplify(expand(
    m*n*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1))))));
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))} \\ Seiichi Manyama, Jan 13 2021

Formula

T(m,n) = m*n*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1).

A175243 Array read by antidiagonals: total number of spanning trees R_n(m) of the complete prism K_m X C_n.

Original entry on oeis.org

1, 2, 1, 3, 12, 3, 4, 75, 294, 16, 5, 384, 11664, 16384, 125, 6, 1805, 367500, 5647152, 1640250, 1296, 7, 8100, 10609215, 1528823808, 6291456000, 259200000, 16807, 8, 35287, 292626432, 380008339280, 18911429680500, 13556617751088, 59549251454
Offset: 1

Views

Author

R. J. Mathar, Mar 13 2010

Keywords

Examples

			The array starts in row n=1 as:
  1,    1,        3,         16,        125
  2,   12,      294,      16384,    1640250
  3,   75,    11664,    5647152, 6291456000
  4,  384,   367500, 1528823808,
  5, 1805, 10609215,
		

Crossrefs

Cf. A006235 (column 2), A000272, A212798 (column 3).

Programs

  • Maple
    A175243 := proc(n,m) n*2^(m-1)/m*( orthopoly[T](n,1+m/2)-1)^(m-1) ; end proc:
    for d from 2 to 10 do for m from 1 to d-1 do n := d-m ; printf("%d,",A175243(n,m)) ; end do: end do:
  • Mathematica
    r[n_, m_] := n*2^(m-1)*(ChebyshevT[n, 1+m/2]-1)^(m-1)/m; Table[r[n-m, m], {n, 2, 9}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)

Formula

R_n(m) = n*2^(m-1)* (T(n,1+m/2)-1)^(m-1)/m, where T(n,x) are Chebyshev polynomials, A008310.
Each column of the array is a linear divisibility sequence. Conjecturally, the k-th column satisfies a linear recurrence of order 4*k - 2. - Peter Bala, May 04 2014

A212799 Row 4 of array in A212796.

Original entry on oeis.org

4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, 3771854305099776, 344499209234302500, 31074298464967845120, 2774871814779003772844, 245741556726521856000000, 21611621448116558812137652, 1889376666754339457990201088, 164334311374716912516773437500
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(6*n-4)*n*Product[Sin[j*Pi/4]^2 + Sin[k*Pi/n]^2, {j,1,3}, {k,1,n-1}], {n,1,20}]//Round (* Vaclav Kotesovec, Feb 26 2021 *)
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXCk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
            grids.append((i + k - 1, i))
        return grids
    def A212799(n):
        if n == 1: return 4
        if n == 2: return 2304
        universe = make_CnXCk(4, n)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A212799(n) for n in range(1, 8)])  # Seiichi Manyama, Nov 22 2020

Formula

From Vaclav Kotesovec, Feb 26 2021: (Start)
a(n) ~ (21 + 12*sqrt(3) + 2*sqrt(2*(97 + 56*sqrt(3))))^n * n/4.
G.f.: 4*x*(1 + 310*x - 33278*x^2 + 785814*x^3 + 4923451*x^4 - 476492324*x^5 + 8394222196*x^6 - 74272031652*x^7 + 371582629705*x^8 - 981246223862*x^9 + 441533151262*x^10 + 6161037199338*x^11 - 23802532730757*x^12 + 46995963516168*x^13 - 58240430817576*x^14 + 46995963516168*x^15 - 23802532730757*x^16 + 6161037199338*x^17 + 441533151262*x^18 - 981246223862*x^19 + 371582629705*x^20 - 74272031652*x^21 + 8394222196*x^22 - 476492324*x^23 + 4923451*x^24 + 785814*x^25 - 33278*x^26 + 310*x^27 + x^28)/ ((1 - x)^2*(1 - 14*x + x^2)^2*(1 - 6*x + x^2)^2*(1 - 4*x + x^2)^2* (1 - 84*x + 230*x^2 - 84*x^3 + x^4)^2*(1 - 24*x + 50*x^2 - 24*x^3 + x^4)^2). (End)

Extensions

a(10)-a(15) from Seiichi Manyama, Nov 22 2020
Showing 1-3 of 3 results.