cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A212796 Square array read by antidiagonals: T(m,n) = number of spanning trees in C_m X C_n.

Original entry on oeis.org

1, 2, 2, 3, 32, 3, 4, 294, 294, 4, 5, 2304, 11664, 2304, 5, 6, 16810, 367500, 367500, 16810, 6, 7, 117600, 10609215, 42467328, 10609215, 117600, 7, 8, 799694, 292626432, 4381392020, 4381392020, 292626432, 799694, 8, 9, 5326848, 7839321861, 428652000000, 1562500000000, 428652000000, 7839321861, 5326848, 9
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Examples

			Array begins:
  1,    2,      3,        4,          5,            6               7, ...
  2,   32,    294,     2304,      16810,       117600,         799694, ...
  3,  294,  11664,   367500,   10609215,    292626432,     7839321861, ...
  4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, ...
  ...
		

Crossrefs

Rows and columns 1..10 give A000027, A212797, A212798, A212799, A358810, A358811, A358812, A358813, A358814, A358815.
Diagonal gives A212800.

Programs

  • Maple
    Digits:=200;
    T:=(m,n)->round(Re(evalf(simplify(expand(
    m*n*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1))))));
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(n*k*prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))} \\ Seiichi Manyama, Jan 13 2021

Formula

T(m,n) = m*n*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1).

A358856 Number of (undirected) cycles in the graph C_6 X C_n.

Original entry on oeis.org

35205, 1165194, 34846271, 995818716, 27888940001, 773821636750, 21378607696815, 589724385779004, 16270311004670729, 449476421435825046, 12442365158796491483, 345293706994488530008, 9609116953522118190009, 268189777386676703675238, 7507073356371047897526119, 210735605847160867677182616
Offset: 3

Views

Author

Seiichi Manyama, Dec 03 2022

Keywords

Crossrefs

Extensions

a(7)-a(18) from Andrew Howroyd, Jan 28 2023

A358870 Number of (undirected) Hamiltonian paths in the graph C_6 X C_n.

Original entry on oeis.org

3264, 73368, 2172480, 29861820, 560028096, 6632769528, 103075391424, 1156940480232, 16166871906480, 176333810290572, 2300510733948576, 24611138715163572, 306092489935215648, 3227108582232289260, 38755349620705085952, 403867959699992233836, 4722889110592680685152, 48750193590184268147100
Offset: 2

Views

Author

Seiichi Manyama, Dec 04 2022

Keywords

Crossrefs

Extensions

More terms from Ed Wynn, Jul 07 2023

A358872 Number of (undirected) paths in the graph C_6 X C_n.

Original entry on oeis.org

2298906, 136547568, 6486444750, 272445788808, 10588228608678, 390094527889632, 13820471174703870, 475213692224985720, 15959826206607422634, 525938391754196467536, 17064848263643902844850, 546612855015952410743736, 17320886593911945339408810, 543869852159220927372363456
Offset: 3

Views

Author

Seiichi Manyama, Dec 04 2022

Keywords

Crossrefs

Extensions

a(7)-a(16) from Andrew Howroyd, Jan 28 2023
Showing 1-4 of 4 results.