A116469
Square array read by antidiagonals: T(m,n) = number of spanning trees in an m X n grid.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 56, 192, 56, 1, 1, 209, 2415, 2415, 209, 1, 1, 780, 30305, 100352, 30305, 780, 1, 1, 2911, 380160, 4140081, 4140081, 380160, 2911, 1, 1, 10864, 4768673, 170537640, 557568000, 170537640, 4768673, 10864, 1
Offset: 1
a(2,2) = 4, since we must have exactly 3 of the 4 possible connections: if we have all 4 there are multiple paths between points; if we have fewer some points will be isolated from others.
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 4, 15, 56, 209, 780, ...
1, 15, 192, 2415, 30305, 380160, ...
1, 56, 2415, 100352, 4140081, 170537640, ...
1, 209, 30305, 4140081, 557568000, 74795194705, ...
1, 780, 380160, 170537640, 74795194705, 32565539635200, ...
-
Digits:=200;
T:=(m,n)->round(Re(evalf(simplify(expand(
mul(mul( 4*sin(h*Pi/(2*m))^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1)))))); # crude Maple program from N. J. A. Sloane, May 27 2012
-
T[m_, n_] := Product[4 Sin[h Pi/(2 m)]^2 + 4 Sin[k Pi/(2 n)]^2, {h, m - 1}, {k, n - 1}]; Flatten[Table[FullSimplify[T[k, r - k]], {r, 2, 10}, {k, 1, r - 1}]] (* Ben Branman, Mar 10 2013 *)
-
T(n,m) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(m-1, 2, (4-x)/2)); \\ Michel Marcus, Apr 13 2020
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A116469(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A116469(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)]) # Seiichi Manyama, Apr 12 2020
A210724
Number of domino tilings of the 11 X n grid with upper left corner removed iff n is odd.
Original entry on oeis.org
1, 1, 144, 780, 51205, 380160, 21001799, 170537640, 8940739824, 74795194705, 3852472573499, 32565539635200, 1666961188795475, 14143261515284447, 722364079570222320, 6136973985625588560, 313196612952258199679, 2662079368040434932480, 135818983640055277506397
Offset: 0
-
A[1, 1] = 1;
A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
a[n_] := A[11, n];
a /@ Range[0, 18] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)
A161498
Expansion of x*(1-x)*(1+x)/(1-13*x+36*x^2-13*x^3+x^4).
Original entry on oeis.org
1, 13, 132, 1261, 11809, 109824, 1018849, 9443629, 87504516, 810723277, 7510988353, 69584925696, 644660351425, 5972359368781, 55329992188548, 512595960817837, 4748863783286881, 43995092132369664, 407585519020921249
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (13,-36,13,-1)
-
I:=[1,13,132,1261]; [n le 4 select I[n] else 13*Self(n-1)-36*Self(n-2)+13*Self(n-3)-Self(n-4): n in [1..20]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[(1 - x)*(1 + x)/(1 - 13*x + 36*x^2 - 13*x^3 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 19 2012 *)
A278417
a(n) = n*((2+sqrt(3))^n + (2-sqrt(3))^n)/2.
Original entry on oeis.org
0, 2, 14, 78, 388, 1810, 8106, 35294, 150536, 632034, 2620870, 10759342, 43804812, 177105266, 711809378, 2846259390, 11330543632, 44929049794, 177540878718, 699402223118, 2747583822740, 10766828545746, 42095796462874, 164244726238366, 639620518118424, 2486558615814050, 9651161613824822, 37403957244654702
Offset: 0
-
f:=n->expand(n*((2+sqrt(3))^n + (2-sqrt(3))^n)/2); # N. J. A. Sloane, May 13 2017
-
Table[Simplify[(n/2) (((2 + #)^n + (2 - #)^n)) &@ Sqrt@ 3], {n, 3, 27}] (* or *)
Drop[#, 3] &@ CoefficientList[Series[2 x^3*(39 - 118 x + 55 x^2 - 7 x^3)/(1 - 4 x + x^2)^2, {x, 0, 27}], x] (* Michael De Vlieger, Nov 24 2016 *)
LinearRecurrence[{8,-18,8,-1},{0,2,14,78},30] (* Harvey P. Dale, Jan 01 2021 *)
-
vector(25, n, n+=2; n*((2+sqrt(3))^n + ((2-sqrt(3))^n))/2) \\ Colin Barker, Nov 21 2016
-
Vec(2*x^3*(39 - 118*x + 55*x^2 - 7*x^3) / (1 - 4*x + x^2)^2 + O(x^30)) \\ Colin Barker, Nov 21 2016
-
def a278417(n):
a = [0, 2, 14, 78, 388, 1810]
if n < 6:
return a[n]
for k in range(n - 5):
a = a[1:] + [7*a[-1] - 10*a[-2] - 10*a[-3] + 7*a[-4] - a[-5]]
return a[-1]
# David Radcliffe, May 09 2025
A338832
Number of spanning trees in the k_1 X ... X k_j grid graph, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.
Original entry on oeis.org
1, 1, 1, 4, 1, 15, 1, 384, 192, 56, 1, 31500, 1, 209, 2415, 42467328, 1, 49766400, 1, 2558976, 30305, 780, 1, 3500658000000, 100352, 2911, 8193540096000, 207746836, 1, 76752081000, 1, 20776019874734407680, 380160, 10864, 4140081, 242716067758080000000, 1
Offset: 1
The partition (2, 2, 1) has Heinz number 18 and the 3 X 3 X 2 grid graph has a(18) = 49766400 spanning trees.
2 X n grid:
A001353(n) = a(2*prime(n-1))
3 X n grid:
A006238(n) = a(3*prime(n-1))
4 X n grid:
A003696(n) = a(5*prime(n-1))
5 X n grid:
A003779(n) = a(7*prime(n-1))
6 X n grid:
A139400(n) = a(11*prime(n-1))
7 X n grid:
A334002(n) = a(13*prime(n-1))
8 X n grid:
A334003(n) = a(17*prime(n-1))
9 X n grid:
A334004(n) = a(19*prime(n-1))
10 X n grid:
A334005(n) = a(23*prime(n-1))
n X n grid:
A007341(n) = a(prime(n-1)^2)
m X n grid:
A116469(m,n) = a(prime(m-1)*prime(n-1))
2 X 2 X n grid:
A003753(n) = a(4*prime(n-1))
2 X n X n grid:
A067518(n) = a(2*prime(n-1)^2)
n X n X n grid:
A071763(n) = a(prime(n-1)^3)
2 X ... X 2 grid:
A006237(n) = a(2^n)
Showing 1-5 of 5 results.
Comments