cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paul Raff

Paul Raff's wiki page.

Paul Raff has authored 17 sequences. Here are the ten most recent ones:

A167061 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}}.

Original entry on oeis.org

40, 47040, 48384000, 49461807360, 50545351901000, 51651393970176000, 52781550346052950760, 53936428658183506928640, 55116575633234676605184000, 56322544581812152703647896000, 57554900528304912551898910864840, 58814220831251084699615165546496000, 60101095479875496770600392870888679560
Offset: 1

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 1152 a(n-1)
- 138048 a(n-2)
+ 5263416 a(n-3)
- 72792384 a(n-4)
+ 279916416 a(n-5)
- 429599666 a(n-6)
+ 279916416 a(n-7)
- 72792384 a(n-8)
+ 5263416 a(n-9)
- 138048 a(n-10)
+ 1152 a(n-11)
- a(n-12)
G.f.: -40x(x^10 +24x^9 -7104x^8 +167016x^7 -378475x^6 +378475x^4 -167016x^3 +7104x^2 -24x -1)/ (x^12 -1152x^11 +138048x^10 -5263416x^9 +72792384x^8 -279916416x^7 +429599666x^6 -279916416x^5 +72792384x^4 -5263416x^3 +138048x^2 -1152x +1).

A167059 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}}.

Original entry on oeis.org

8, 4032, 1612800, 631427328, 246562692200, 96244833484800, 37566939748080392, 14663279200231130112, 5723424260979717196800, 2233987356983360324068800, 871977888467614764819315368, 340353508793721676084268236800, 132847991246505889127220947758952
Offset: 1

Author

Paul Raff, Jun 01 2010

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 504 a(n-1)
- 48706 a(n-2)
+ 1765008 a(n-3)
- 29021617 a(n-4)
+ 239655024 a(n-5)
- 1039298722 a(n-6)
+ 2447629128 a(n-7)
- 3242171236 a(n-8)
+ 2447629128 a(n-9)
- 1039298722 a(n-10)
+ 239655024 a(n-11)
- 29021617 a(n-12)
+ 1765008 a(n-13)
- 48706 a(n-14)
+ 504 a(n-15)
- a(n-16)
G.f.: -8x (x^14 -3710x^12 +104832x^11 -997954x^10 +3633840x^9 -4759203x^8 +4759203x^6 -3633840x^5 +997954x^4 -104832x^3 +3710x^2-1)/ (x^16 -504x^15 +48706x^14 -1765008x^13 +29021617x^12 -239655024x^11 +1039298722x^10 -2447629128x^9 +3242171236x^8 -2447629128x^7 +1039298722x^6 -239655024x^5 +29021617x^4 -1765008x^3 +48706x^2 -504x+1).

A167058 Number of spanning trees in (S_5 + e) X P_n.

Original entry on oeis.org

3, 945, 221184, 50055705, 11275732875, 2538325278720, 571357349020731, 128606300878893705, 28947814696524275712, 6515821689652895090625, 1466636804229895456081107, 330123137841949620861665280, 74306935243221668928140352051
Offset: 1

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Programs

  • Mathematica
    CoefficientList[Series[-3x (x^6+45x^5-793x^4+793x^2-45x-1)/(x^8-270x^7+ 10529x^6-95310x^5+177156x^4-95310x^3+10529x^2-270x+1),{x,0,30}],x] (* or *) LinearRecurrence[{270,-10529,95310,-177156,95310,-10529,270,-1},{0,3,945,221184,50055705,11275732875,2538325278720,571357349020731},30] (* Harvey P. Dale, Nov 22 2021 *)

Formula

a(n) = 270 a(n-1)
- 10529 a(n-2)
+ 95310 a(n-3)
- 177156 a(n-4)
+ 95310 a(n-5)
- 10529 a(n-6)
+ 270 a(n-7)
- a(n-8)
G.f.: -3x(x^6 +45x^5 -793x^4 +793x^2 -45x -1)/ (x^8 -270x^7 +10529x^6 -95310x^5 +177156x^4 -95310x^3 +10529x^2 -270x +1)

A167069 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {4, 5}}.

Original entry on oeis.org

3, 1005, 250848, 60075885, 14263332015, 3379514561280, 800337094071879, 189513130911442365, 44873808170614072416, 10625354802279238810125, 2515898969449422698378427, 595720806457312484163072000, 141056237447350542048435569739
Offset: 1

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 335 a(n-1)
- 26224 a(n-2)
+ 744035 a(n-3)
- 10084457 a(n-4)
+ 72968360 a(n-5)
- 295849710 a(n-6)
+ 685799270 a(n-7)
- 909474816 a(n-8)
+ 685799270 a(n-9)
- 295849710 a(n-10)
+ 72968360 a(n-11)
- 10084457 a(n-12)
+ 744035 a(n-13)
- 26224 a(n-14)
+ 335 a(n-15)
- a(n-16)
G.f.: -3x(x^14 -2385x^12 +54940x^11 -451104x^10 +1542340x^9 -2024890x^8 +2024890x^6 -1542340x^5 +451104x^4 -54940x^3 +2385x^2 -1)/ (x^16 -335x^15 +26224x^14 -744035x^13 +10084457x^12 -72968360x^11 +295849710x^10 -685799270x^9 +909474816x^8 -685799270x^7 +295849710x^6 -72968360x^5 +10084457x^4 -744035x^3 +26224x^2 -335x +1).

A167068 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 5}, {4, 5}}.

Original entry on oeis.org

11, 6061, 2733511, 1215842661, 540144000000, 239933520731861, 106577890632874111, 47341582784338831461, 21028987835540967334811, 9341012640240002304000000, 4149249488236281570533713211, 1843084039808720108847180812661, 818692341198182161542031245824911
Offset: 1

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 551 a(n-1)
- 51500 a(n-2)
+ 1873400 a(n-3)
- 31993500 a(n-4)
+ 271314053 a(n-5)
- 1157139603 a(n-6)
+ 2669595000 a(n-7)
- 3507446800 a(n-8)
+ 2669595000 a(n-9)
- 1157139603 a(n-10)
+ 271314053 a(n-11)
- 31993500 a(n-12)
+ 1873400 a(n-13)
- 51500 a(n-14)
+ 551 a(n-15)
- a(n-16)
G.f.: -11x (x^14 -3600x^12 +110200x^11 -1112601x^10 +3855898x^9 -4841800x^8 +4841800x^6 -3855898x^5 +1112601x^4 -110200x^3 +3600x^2-1)/(x^16 -551x^15 +51500x^14 -1873400x^13 +31993500x^12 -271314053x^11 +1157139603x^10 -2669595000x^9 +3507446800x^8 -2669595000x^7 +1157139603x^6 -271314053x^5 +31993500x^4 -1873400x^3 +51500x^2 -551x+1).

A167066 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 5}, {4, 5}}.

Original entry on oeis.org

24, 20160, 14515200, 10373448960, 7410329640120, 5293465841664000, 3781306797401609112, 2701118650243184317440, 1929502759140378901785600, 1378310758353447731649144000, 984575190426384431371033497336, 703316214957312006365562863616000, 502403171470887016026721609133115192
Offset: 1

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 840 a(n-1)
- 95522 a(n-2)
+ 4231920 a(n-3)
- 87627601 a(n-4)
+ 863951760 a(n-5)
- 3862082882 a(n-6)
+ 9004563960 a(n-7)
- 11846119204 a(n-8)
+ 9004563960 a(n-9)
- 3862082882 a(n-10)
+ 863951760 a(n-11)
- 87627601 a(n-12)
+ 4231920 a(n-13)
- 95522 a(n-14)
+ 840 a(n-15)
- a(n-16)
G.f.: -24x(x^14 -5278x^12 +201600x^11 -2458194x^10 +8663760x^9 -10786195x^8 +10786195x^6 -8663760x^5 +2458194x^4 -201600x^3 +5278x^2 -1)/ (x^16 -840x^15 +95522x^14 -4231920x^13 +87627601x^12 -863951760x^11 +3862082882x^10 -9004563960x^9 +11846119204x^8 -9004563960x^7 +3862082882x^6 -863951760x^5 +87627601x^4 -4231920x^3 +95522x^2 -840x +1).

A167063 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {3, 5}}.

Original entry on oeis.org

21, 16905, 11515392, 7766579625, 5234202655605, 3527304596766720, 2377020102892371573, 1601852459790100499625, 1079473906452564386072064, 727447713589013080159967625, 490220442215546503112745464469, 330355127203424593855513657344000, 222623335689469074506271256084716693
Offset: 1

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs a X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 805 a(n-1)
- 94300 a(n-2)
+ 4128845 a(n-3)
- 82955561 a(n-4)
+ 801676960 a(n-5)
- 3659544950 a(n-6)
+ 8726681390 a(n-7)
- 11584112776 a(n-8)
+ 8726681390 a(n-9)
- 3659544950 a(n-10)
+ 801676960 a(n-11)
- 82955561 a(n-12)
+ 4128845 a(n-13)
- 94300 a(n-14)
+ 805 a(n-15)
- a(n-16)
G.f.: -21x(x^14 -5373x^12 +196420x^11 -2311184x^10 +8452500x^9 -10863790x^8 +10863790x^6 -8452500x^5 +2311184x^4 -196420x^3 +5373x^2 -1)/ (x^16 -805x^15 +94300x^14 -4128845x^13 +82955561x^12 -801676960x^11 +3659544950x^10 -8726681390x^9 +11584112776x^8 -8726681390x^7 +3659544950x^6 -801676960x^5 +82955561x^4 -4128845x^3 +94300x^2 -805x +1).

A167072 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}, {4, 5}}.

Original entry on oeis.org

12, 6720, 3110400, 1423806720, 651286330860, 297900675072000, 136260356109480876, 62325740425973498880, 28507909150300692211200, 13039570449847302883368000, 5964323676112090939594326348, 2728092696767010687412666368000, 1247834652562251646622689145644236
Offset: 1

Author

Paul Raff, Jun 01 2010

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 525 a(n-1)
- 32415 a(n-2)
+ 696920 a(n-3)
- 5936265 a(n-4)
+ 19827675 a(n-5)
- 29313582 a(n-6)
+ 19827675 a(n-7)
- 5936265 a(n-8)
+ 696920 a(n-9)
- 32415 a(n-10)
+ 525 a(n-11)
- a(n-12).
G.f.: -12x (x^10 +35x^9 -2385x^8 +26040x^7 -54030x^6 +54030x^4 -26040x^3 +2385x^2 -35x-1) / (x^12 -525x^11 +32415x^10 -696920x^9 +5936265x^8 -19827675x^7 +29313582x^6 -19827675x^5 +5936265x^4 -696920x^3 +32415x^2 -525x+1).

A167071 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}}.

Original entry on oeis.org

4, 1376, 361860, 92544256, 23575404820, 6002044445280, 1527898117755412, 388939442019315712, 99007542753465378420, 25203122804459545322080, 6415645979596681028789108, 1633151297922105531036929280, 415731036835959295502046104100, 105827485262836457484100780941664
Offset: 1

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 344 a(n-1)
- 25540 a(n-2)
+ 745448 a(n-3)
- 10445708 a(n-4)
+ 76194968 a(n-5)
- 303860988 a(n-6)
+ 687124520 a(n-7)
- 899525622 a(n-8)
+ 687124520 a(n-9)
- 303860988 a(n-10)
+ 76194968 a(n-11)
- 10445708 a(n-12)
+ 745448 a(n-13)
- 25540 a(n-14)
+ 344 a(n-15)
- a(n-16)
G.f.: -4x (x^14 -2331x^12 +56416x^11 -467115x^10 +1546624x^9 -1949983x^8 +1949983x^6 -1546624x^5 +467115x^4 -56416x^3 +2331x^2 -1)/ (x^16 -344x^15 +25540x^14 -745448x^13 +10445708x^12 -76194968x^11 +303860988x^10 -687124520x^9 +899525622x^8 -687124520x^7 +303860988x^6 -76194968x^5 +10445708x^4 -745448x^3 +25540x^2 -344x+1).

A167070 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}}.

Original entry on oeis.org

1, 201, 27872, 3656793, 474581525, 61445719296, 7951276371389, 1028790034978377, 133107787044919648, 17221739109190982025, 2228177484370996025801, 288285215706960759705600, 37298804748402271018820409, 4825779209505263485071458889
Offset: 1

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.

Formula

a(n) = 201 a(n-1)
- 11104 a(n-2)
+ 259893 a(n-3)
- 3001225 a(n-4)
+ 18824856 a(n-5)
- 67848270 a(n-6)
+ 144802410 a(n-7)
- 186068896 a(n-8)
+ 144802410 a(n-9)
- 67848270 a(n-10)
+ 18824856 a(n-11)
- 3001225 a(n-12)
+ 259893 a(n-13)
- 11104 a(n-14)
+ 201 a(n-15)
- a(n-16)
G.f.: -x(x^14 -1425x^12 +26532x^11 -180448x^10 +545916x^9 -661242x^8 +661242x^6 -545916x^5 +180448x^4 -26532x^3 +1425x^2 -1)/ (x^16 -201x^15 +11104x^14 -259893x^13 +3001225x^12 -18824856x^11 +67848270x^10 -144802410x^9 +186068896x^8 -144802410x^7 +67848270x^6 -18824856x^5 +3001225x^4 -259893x^3 +11104x^2 -201x +1).