Original entry on oeis.org
1, 14, 161, 1792, 19809, 218638, 2412353, 26614784, 293628097, 3239445006, 35739069409, 394290020096, 4349990523425, 47991114171406, 529460241815169, 5841251080892416, 64443392518654337, 710969410782059534
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for linear recurrences with constant coefficients, signature (14,-34,14,-1).
-
a:=[1,14,161,1792];; for n in [5..20] do a[n]:=14*a[n-1]-34*a[n-2] +14*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Dec 24 2019
-
I:=[1,14,161,1792]; [n le 4 select I[n] else 14*Self(n-1)-34*Self(n-2) +14*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 28 2014
-
seq(simplify( ChebyshevU(n, (4+sqrt(2))/2)*ChebyshevU(n, (4-sqrt(2))/2) ), n = 0 .. 20); # G. C. Greubel, Dec 24 2019
-
CoefficientList[Series[(1-x^2)/(1-14x+34x^2-14x^3+x^4), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)
Table[Simplify[ChebyshevU[n, (4+Sqrt[2])/2]*ChebyshevU[n, (4-Sqrt[2])/2]], {n, 0, 20}] (* G. C. Greubel, Dec 24 2019 *)
-
vector(21, n, round(polchebyshev(n-1, 2, (4+sqrt(2))/2)*polchebyshev(n-1, 2, (4-sqrt(2))/2)) ) \\ G. C. Greubel, Dec 24 2019
-
[round(chebyshev_U(n,(4+sqrt(2))/2)*chebyshev_U(n,(4-sqrt(2))/2)) for n in (0..20)] # G. C. Greubel, Dec 24 2019
A116469
Square array read by antidiagonals: T(m,n) = number of spanning trees in an m X n grid.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 56, 192, 56, 1, 1, 209, 2415, 2415, 209, 1, 1, 780, 30305, 100352, 30305, 780, 1, 1, 2911, 380160, 4140081, 4140081, 380160, 2911, 1, 1, 10864, 4768673, 170537640, 557568000, 170537640, 4768673, 10864, 1
Offset: 1
a(2,2) = 4, since we must have exactly 3 of the 4 possible connections: if we have all 4 there are multiple paths between points; if we have fewer some points will be isolated from others.
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 4, 15, 56, 209, 780, ...
1, 15, 192, 2415, 30305, 380160, ...
1, 56, 2415, 100352, 4140081, 170537640, ...
1, 209, 30305, 4140081, 557568000, 74795194705, ...
1, 780, 380160, 170537640, 74795194705, 32565539635200, ...
-
Digits:=200;
T:=(m,n)->round(Re(evalf(simplify(expand(
mul(mul( 4*sin(h*Pi/(2*m))^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1)))))); # crude Maple program from N. J. A. Sloane, May 27 2012
-
T[m_, n_] := Product[4 Sin[h Pi/(2 m)]^2 + 4 Sin[k Pi/(2 n)]^2, {h, m - 1}, {k, n - 1}]; Flatten[Table[FullSimplify[T[k, r - k]], {r, 2, 10}, {k, 1, r - 1}]] (* Ben Branman, Mar 10 2013 *)
-
T(n,m) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(m-1, 2, (4-x)/2)); \\ Michel Marcus, Apr 13 2020
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A116469(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A116469(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)]) # Seiichi Manyama, Apr 12 2020
A189004
Number of domino tilings of the 7 X n grid with upper left corner removed iff n is odd.
Original entry on oeis.org
1, 1, 21, 56, 781, 2415, 31529, 100352, 1292697, 4140081, 53175517, 170537640, 2188978117, 7022359583, 90124167441, 289143013376, 3710708201969, 11905151192865, 152783289861989, 490179860527896, 6290652543875133
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (0, 56, 0, -672, 0, 2632, 0, -4094, 0, 2632, 0, -672, 0, 56, 0, -1).
-
A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
a[n_] := A[7, n];
a /@ Range[0, 20] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)
A338617
Number of spanning trees in the n X 4 king graph.
Original entry on oeis.org
1, 2304, 1612127, 1064918960, 698512774464, 457753027631164, 299940605530116319, 196531575367664678400, 128774089577828985307985, 84377085408032081020147412, 55286683084713553039968700608, 36225680193828279388607070447232, 23736274839549237072891352060244017
Offset: 1
-
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A338029(n, k):
if n == 1 or k == 1: return 1
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
def A338617(n):
return A338029(n, 4)
print([A338617(n) for n in range(1, 20)])
Original entry on oeis.org
4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, 3771854305099776, 344499209234302500, 31074298464967845120, 2774871814779003772844, 245741556726521856000000, 21611621448116558812137652, 1889376666754339457990201088, 164334311374716912516773437500
Offset: 1
-
Table[2^(6*n-4)*n*Product[Sin[j*Pi/4]^2 + Sin[k*Pi/n]^2, {j,1,3}, {k,1,n-1}], {n,1,20}]//Round (* Vaclav Kotesovec, Feb 26 2021 *)
-
# Using graphillion
from graphillion import GraphSet
def make_CnXCk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
grids.append((i + k - 1, i))
return grids
def A212799(n):
if n == 1: return 4
if n == 2: return 2304
universe = make_CnXCk(4, n)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A212799(n) for n in range(1, 8)]) # Seiichi Manyama, Nov 22 2020
A360195
Number of acyclic spanning subgraphs in the 4 X n grid graph.
Original entry on oeis.org
8, 836, 85818, 8790016, 900013270, 92146956300, 9434262852690, 965904015750408, 98891686243392270, 10124779093041746052, 1036600283636692454794, 106129737227642833341248, 10865828704552798371380934, 1112470797598979236296844092, 113897550673086022197853291458
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (146,-5145,74504,-525120,1885344,-3430128,3147392,-1418496,278528,-16384).
A338832
Number of spanning trees in the k_1 X ... X k_j grid graph, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.
Original entry on oeis.org
1, 1, 1, 4, 1, 15, 1, 384, 192, 56, 1, 31500, 1, 209, 2415, 42467328, 1, 49766400, 1, 2558976, 30305, 780, 1, 3500658000000, 100352, 2911, 8193540096000, 207746836, 1, 76752081000, 1, 20776019874734407680, 380160, 10864, 4140081, 242716067758080000000, 1
Offset: 1
The partition (2, 2, 1) has Heinz number 18 and the 3 X 3 X 2 grid graph has a(18) = 49766400 spanning trees.
2 X n grid:
A001353(n) = a(2*prime(n-1))
3 X n grid:
A006238(n) = a(3*prime(n-1))
4 X n grid:
A003696(n) = a(5*prime(n-1))
5 X n grid:
A003779(n) = a(7*prime(n-1))
6 X n grid:
A139400(n) = a(11*prime(n-1))
7 X n grid:
A334002(n) = a(13*prime(n-1))
8 X n grid:
A334003(n) = a(17*prime(n-1))
9 X n grid:
A334004(n) = a(19*prime(n-1))
10 X n grid:
A334005(n) = a(23*prime(n-1))
n X n grid:
A007341(n) = a(prime(n-1)^2)
m X n grid:
A116469(m,n) = a(prime(m-1)*prime(n-1))
2 X 2 X n grid:
A003753(n) = a(4*prime(n-1))
2 X n X n grid:
A067518(n) = a(2*prime(n-1)^2)
n X n X n grid:
A071763(n) = a(prime(n-1)^3)
2 X ... X 2 grid:
A006237(n) = a(2^n)
Showing 1-7 of 7 results.
Comments