cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A241606 A linear divisibility sequence of the fourth order related to A003779.

Original entry on oeis.org

1, 11, 95, 781, 6336, 51205, 413351, 3335651, 26915305, 217172736, 1752296281, 14138673395, 114079985111, 920471087701, 7426955448000, 59925473898301, 483517428660911, 3901330906652795, 31478457514091281, 253988526230055936
Offset: 1

Views

Author

Peter Bala, Apr 26 2014

Keywords

Comments

A003779, which counts spanning trees in the graph P_5 x P_n, is a linear divisibility sequence of order 16. It factors into two fourth-order linear divisibility sequences; this sequence is one of the factors, the other is A143699.
The present sequence is the case P1 = 11, P2 = 23, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy.

Crossrefs

Programs

  • Mathematica
    a[n_] := ChebyshevU[n-1, 1/4*(7-Sqrt[5])]*ChebyshevU[n-1, 1/4*(7+Sqrt[5])]; Table[a[n]//Round, {n, 1, 20}] (* Jean-François Alcover, Apr 28 2014, after Peter Bala *)

Formula

O.g.f. x*(1 - x^2)/(1 - 11*x + 25*x^2 - 11*x^3 + x^4).
a(n) = A003779(n)/A143699(n).
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), n >= 1, where alpha = 1/4*(11 + sqrt(29)), beta = 1/4*(11 - sqrt(29)) and where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n)= U(n-1,1/4*(7 - sqrt(5)))*U(n-1,1/4*(7 + sqrt(5))), n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2X2 matrix T(n,M), where M is the 2 X 2 matrix [0, -23/4; 1, 11/2].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences.
a(n) = 11*a(n-1) - 25*a(n-2) + 11*a(n-3) - a(n-4). - Vaclav Kotesovec, Apr 28 2014

A116469 Square array read by antidiagonals: T(m,n) = number of spanning trees in an m X n grid.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 56, 192, 56, 1, 1, 209, 2415, 2415, 209, 1, 1, 780, 30305, 100352, 30305, 780, 1, 1, 2911, 380160, 4140081, 4140081, 380160, 2911, 1, 1, 10864, 4768673, 170537640, 557568000, 170537640, 4768673, 10864, 1
Offset: 1

Views

Author

Calculated by Hugo van der Sanden after a suggestion from Leroy Quet, Mar 20 2006

Keywords

Comments

This is the number of ways the points in an m X n grid can be connected to their orthogonal neighbors such that for any pair of points there is precisely one path connecting them.
a(n,n) = A007341(n).
a(m,n) = number of perfect mazes made from a grid of m X n cells. - Leroy Quet, Sep 08 2007
Also number of domino tilings of the (2m-1) X (2n-1) rectangle with upper left corner removed. For m=2, n=3 the 15 domino tilings of the 3 X 5 rectangle with upper left corner removed are:
. ._.___. . ._.___. . ._.___. . ._.___. . ._.___.
.|__|___| .|__|___| .| | |__| .|__|___| .| |__| |
| |_|___| | | | |_| | |||___| |_| |_| | ||__|_|
||__|___| |||_|_| ||__|___| |_|_|_| ||__|___|
. ._.___. . ._.___. . ._.___. . ._.___. . ._.___.
.|__|___| .|__|___| .| | |__| .|__|___| .|__|___|
| |_| | | | | | | | | | ||| | | |_| | | | | | |_| |
||__|_|| ||_|||_| ||__|_|| |__|_||| |||___|_|
. ._.___. . ._.___. . ._.___. . ._.___. . ._.___.
.|__| | | .|__| | | .| | | | | .|___| | | .|__|___|
| |_|_|| | | | ||_| | |||_|| |__| ||| |_|___| |
||__|___| |||_|_| ||__|___| |_|_|_| |_|___|_|
- Alois P. Heinz, Apr 15 2011
Each row (and column) of the square array is a divisibility sequence, i.e., if n divides m then a(n) divides a(m). It follows that the main diagonal, A007341, is also a divisibility sequence. Row k satisfies a linear recurrence of order 2^k. - Peter Bala, Apr 29 2014

Examples

			a(2,2) = 4, since we must have exactly 3 of the 4 possible connections: if we have all 4 there are multiple paths between points; if we have fewer some points will be isolated from others.
Array begins:
  1,   1,      1,         1,           1,              1, ...
  1,   4,     15,        56,         209,            780, ...
  1,  15,    192,      2415,       30305,         380160, ...
  1,  56,   2415,    100352,     4140081,      170537640, ...
  1, 209,  30305,   4140081,   557568000,    74795194705, ...
  1, 780, 380160, 170537640, 74795194705, 32565539635200, ...
		

Crossrefs

Diagonal gives A007341. Rows and columns 1..10 give A000012, A001353, A006238, A003696, A003779, A139400, A334002, A334003, A334004, A334005.

Programs

  • Maple
    Digits:=200;
    T:=(m,n)->round(Re(evalf(simplify(expand(
    mul(mul( 4*sin(h*Pi/(2*m))^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1)))))); # crude Maple program from N. J. A. Sloane, May 27 2012
  • Mathematica
    T[m_, n_] := Product[4 Sin[h Pi/(2 m)]^2 + 4 Sin[k Pi/(2 n)]^2, {h, m - 1}, {k, n - 1}]; Flatten[Table[FullSimplify[T[k, r - k]], {r, 2, 10}, {k, 1, r - 1}]] (* Ben Branman, Mar 10 2013 *)
  • PARI
    T(n,m) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(m-1, 2, (4-x)/2)); \\ Michel Marcus, Apr 13 2020
  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A116469(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A116469(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)])  # Seiichi Manyama, Apr 12 2020
    

Formula

T(m,n) = Product_{k=1..n-1} Product_{h=1..m-1} (4*sin(h*Pi/(2*m))^2 + 4*sin(k*Pi/(2*n))^2); [Kreweras] - N. J. A. Sloane, May 27 2012
Equivalently, T(n,m) = resultant( U(n-1,x/2), U(m-1,(4-x)/2) ) = Product_{k = 1..n-1} Product_{h = 1..m-1} (4 - 2*cos(h*Pi/m) - 2*cos(k*Pi/n)), where U(n,x) denotes the Chebyshev polynomial of the second kind. The divisibility properties of the array mentioned in the Comments follow from this representation. - Peter Bala, Apr 29 2014

A189005 Number of domino tilings of the 9 X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 55, 209, 6336, 30305, 817991, 4140081, 108435745, 557568000, 14479521761, 74795194705, 1937528668711, 10021992194369, 259423766712000, 1342421467113969, 34741645659770711, 179796299139278305, 4652799879944138561
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Crossrefs

9th row of array A189006.
Bisection gives: A028471 (even part), A003779 (odd part).

Programs

  • Mathematica
    A[1, 1] = 1;
    A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
    a[n_] := A[9, n];
    a /@ Range[0, 18] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)

Formula

G.f.: -(x^30+x^29-154*x^28 +6777*x^26-1440*x^25-123961*x^24 +26752*x^23 +1132714*x^22-185889*x^21 -5684515*x^20+574750*x^19+16401668*x^18 -708928*x^17 -27757938*x^16+27757938*x^14+708928*x^13 -16401668*x^12 -574750*x^11+5684515*x^10 +185889*x^9-1132714*x^8-26752*x^7 +123961*x^6 +1440*x^5-6777*x^4+154*x^2-x-1) / (x^32-209*x^30+11936*x^28 -274208*x^26 +3112032*x^24-19456019*x^22 +70651107*x^20-152325888*x^18+196664896*x^16 -152325888*x^14+70651107*x^12 -19456019*x^10 +3112032*x^8-274208*x^6 +11936*x^4-209*x^2+1).

A339257 Number of spanning trees in the n X 5 king graph.

Original entry on oeis.org

1, 27648, 146356224, 698512774464, 3271331573452800, 15258885095892902976, 71111090441547013886784, 331335100372867196224868352, 1543757070688065237574186369344, 7192607774929149127350811889484864, 33511424900308657559195109303117533184, 156134620449573478209362729027690283037248
Offset: 1

Views

Author

Seiichi Manyama, Nov 29 2020

Keywords

Crossrefs

Column 5 of A338029.
Cf. A003779.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A338029(n, k):
        if n == 1 or k == 1: return 1
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    def A339257(n):
        return A338029(n, 5)
    print([A339257(n) for n in range(1, 15)])

Formula

Empirical g.f.: -x*(218700000000*x^8 - 2040471000000*x^7 + 538526880000*x^6 + 311791396500*x^5 - 17462695797*x^4 - 80280747*x^3 + 10513308*x^2 - 21759*x - 1) / (656100000000*x^8 - 4293081000000*x^7 + 4819127400000*x^6 - 930215250900*x^5 + 51621632181*x^4 - 1033572501*x^3 + 5949540*x^2 - 5889*x + 1). - Vaclav Kotesovec, Dec 09 2020

A338832 Number of spanning trees in the k_1 X ... X k_j grid graph, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 4, 1, 15, 1, 384, 192, 56, 1, 31500, 1, 209, 2415, 42467328, 1, 49766400, 1, 2558976, 30305, 780, 1, 3500658000000, 100352, 2911, 8193540096000, 207746836, 1, 76752081000, 1, 20776019874734407680, 380160, 10864, 4140081, 242716067758080000000, 1
Offset: 1

Views

Author

Pontus von Brömssen, Nov 11 2020

Keywords

Comments

a(n) > 1 precisely when n is composite.

Examples

			The partition (2, 2, 1) has Heinz number 18 and the 3 X 3 X 2 grid graph has a(18) = 49766400 spanning trees.
		

Crossrefs

2 X n grid: A001353(n) = a(2*prime(n-1))
3 X n grid: A006238(n) = a(3*prime(n-1))
4 X n grid: A003696(n) = a(5*prime(n-1))
5 X n grid: A003779(n) = a(7*prime(n-1))
6 X n grid: A139400(n) = a(11*prime(n-1))
7 X n grid: A334002(n) = a(13*prime(n-1))
8 X n grid: A334003(n) = a(17*prime(n-1))
9 X n grid: A334004(n) = a(19*prime(n-1))
10 X n grid: A334005(n) = a(23*prime(n-1))
n X n grid: A007341(n) = a(prime(n-1)^2)
m X n grid: A116469(m,n) = a(prime(m-1)*prime(n-1))
2 X 2 X n grid: A003753(n) = a(4*prime(n-1))
2 X n X n grid: A067518(n) = a(2*prime(n-1)^2)
n X n X n grid: A071763(n) = a(prime(n-1)^3)
2 X ... X 2 grid: A006237(n) = a(2^n)

Formula

a(n) = Product_{n_1=0..k_1-1, ..., n_j=0..k_j-1; not all n_i=0} Sum_{i=1..j} (2*(1 - cos(n_i*Pi/k_i))) / Product_{i=1..j} k_i, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.
Showing 1-5 of 5 results.