A241606
A linear divisibility sequence of the fourth order related to A003779.
Original entry on oeis.org
1, 11, 95, 781, 6336, 51205, 413351, 3335651, 26915305, 217172736, 1752296281, 14138673395, 114079985111, 920471087701, 7426955448000, 59925473898301, 483517428660911, 3901330906652795, 31478457514091281, 253988526230055936
Offset: 1
-
a[n_] := ChebyshevU[n-1, 1/4*(7-Sqrt[5])]*ChebyshevU[n-1, 1/4*(7+Sqrt[5])]; Table[a[n]//Round, {n, 1, 20}] (* Jean-François Alcover, Apr 28 2014, after Peter Bala *)
A116469
Square array read by antidiagonals: T(m,n) = number of spanning trees in an m X n grid.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 56, 192, 56, 1, 1, 209, 2415, 2415, 209, 1, 1, 780, 30305, 100352, 30305, 780, 1, 1, 2911, 380160, 4140081, 4140081, 380160, 2911, 1, 1, 10864, 4768673, 170537640, 557568000, 170537640, 4768673, 10864, 1
Offset: 1
a(2,2) = 4, since we must have exactly 3 of the 4 possible connections: if we have all 4 there are multiple paths between points; if we have fewer some points will be isolated from others.
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 4, 15, 56, 209, 780, ...
1, 15, 192, 2415, 30305, 380160, ...
1, 56, 2415, 100352, 4140081, 170537640, ...
1, 209, 30305, 4140081, 557568000, 74795194705, ...
1, 780, 380160, 170537640, 74795194705, 32565539635200, ...
-
Digits:=200;
T:=(m,n)->round(Re(evalf(simplify(expand(
mul(mul( 4*sin(h*Pi/(2*m))^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1)))))); # crude Maple program from N. J. A. Sloane, May 27 2012
-
T[m_, n_] := Product[4 Sin[h Pi/(2 m)]^2 + 4 Sin[k Pi/(2 n)]^2, {h, m - 1}, {k, n - 1}]; Flatten[Table[FullSimplify[T[k, r - k]], {r, 2, 10}, {k, 1, r - 1}]] (* Ben Branman, Mar 10 2013 *)
-
T(n,m) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(m-1, 2, (4-x)/2)); \\ Michel Marcus, Apr 13 2020
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A116469(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A116469(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)]) # Seiichi Manyama, Apr 12 2020
A189005
Number of domino tilings of the 9 X n grid with upper left corner removed iff n is odd.
Original entry on oeis.org
1, 1, 55, 209, 6336, 30305, 817991, 4140081, 108435745, 557568000, 14479521761, 74795194705, 1937528668711, 10021992194369, 259423766712000, 1342421467113969, 34741645659770711, 179796299139278305, 4652799879944138561
Offset: 0
-
A[1, 1] = 1;
A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
a[n_] := A[9, n];
a /@ Range[0, 18] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)
A339257
Number of spanning trees in the n X 5 king graph.
Original entry on oeis.org
1, 27648, 146356224, 698512774464, 3271331573452800, 15258885095892902976, 71111090441547013886784, 331335100372867196224868352, 1543757070688065237574186369344, 7192607774929149127350811889484864, 33511424900308657559195109303117533184, 156134620449573478209362729027690283037248
Offset: 1
-
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A338029(n, k):
if n == 1 or k == 1: return 1
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
def A339257(n):
return A338029(n, 5)
print([A339257(n) for n in range(1, 15)])
A338832
Number of spanning trees in the k_1 X ... X k_j grid graph, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.
Original entry on oeis.org
1, 1, 1, 4, 1, 15, 1, 384, 192, 56, 1, 31500, 1, 209, 2415, 42467328, 1, 49766400, 1, 2558976, 30305, 780, 1, 3500658000000, 100352, 2911, 8193540096000, 207746836, 1, 76752081000, 1, 20776019874734407680, 380160, 10864, 4140081, 242716067758080000000, 1
Offset: 1
The partition (2, 2, 1) has Heinz number 18 and the 3 X 3 X 2 grid graph has a(18) = 49766400 spanning trees.
2 X n grid:
A001353(n) = a(2*prime(n-1))
3 X n grid:
A006238(n) = a(3*prime(n-1))
4 X n grid:
A003696(n) = a(5*prime(n-1))
5 X n grid:
A003779(n) = a(7*prime(n-1))
6 X n grid:
A139400(n) = a(11*prime(n-1))
7 X n grid:
A334002(n) = a(13*prime(n-1))
8 X n grid:
A334003(n) = a(17*prime(n-1))
9 X n grid:
A334004(n) = a(19*prime(n-1))
10 X n grid:
A334005(n) = a(23*prime(n-1))
n X n grid:
A007341(n) = a(prime(n-1)^2)
m X n grid:
A116469(m,n) = a(prime(m-1)*prime(n-1))
2 X 2 X n grid:
A003753(n) = a(4*prime(n-1))
2 X n X n grid:
A067518(n) = a(2*prime(n-1)^2)
n X n X n grid:
A071763(n) = a(prime(n-1)^3)
2 X ... X 2 grid:
A006237(n) = a(2^n)
Showing 1-5 of 5 results.
Comments