cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A189006 Array A(m,n) read by antidiagonals: number of domino tilings of the m X n grid with upper left corner removed iff m*n is odd, (m>=0, n>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 15, 36, 15, 13, 1, 1, 1, 1, 21, 41, 95, 95, 41, 21, 1, 1, 1, 1, 34, 56, 281, 192, 281, 56, 34, 1, 1, 1, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 1, 1, 1, 89, 209, 2245, 2415, 6728, 2415, 2245, 209, 89, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Examples

			A(3,3) = 4, because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
  . .___. . .___. . .___. . .___.
  ._|___| ._|___| ._| | | ._|___|
  | |___| | | | | | |_|_| |___| |
  |_|___| |_|_|_| |_|___| |___|_|
Array begins:
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  2,  3,   5,    8,   13, ...
  1, 1,  3,  4,  11,   15,   41, ...
  1, 1,  5, 11,  36,   95,  281, ...
  1, 1,  8, 15,  95,  192, 1183, ...
  1, 1, 13, 41, 281, 1183, 6728, ...
		

Crossrefs

Rows m=0+1, 2-12 give: A000012, A000045(n+1), A002530(n+1), A005178(n+1), A189003, A028468, A189004, A028470, A189005, A028472, A210724, A028474.
Main diagonal gives: A189002.

Programs

  • Maple
    with(LinearAlgebra):
    A:= proc(m, n) option remember; local i, j, s, t, M;
          if m=0 or n=0 then 1
        elif m1 or j>1 or s=0 then
                   if j
    				
  • Mathematica
    A[1, 1] = 1; A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2];M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j-s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1-2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m-s, n*m-s}]]]]]; Table[Table[A[m, d-m], {m, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 26 2013, translated from Maple *)

A003779 Number of spanning trees in P_5 x P_n.

Original entry on oeis.org

1, 209, 30305, 4140081, 557568000, 74795194705, 10021992194369, 1342421467113969, 179796299139278305, 24080189412483072000, 3225041354570508955681, 431926215138756947267505, 57847355494807961811035009, 7747424602888405489208931601
Offset: 1

Views

Author

Keywords

Comments

Also number of domino tilings of the 9 X (2n-1) rectangle with upper left corner removed. - Alois P. Heinz, Apr 14 2011
A linear divisibility sequence of order 16; a(n) divides a(m) whenever n divides m. It is the product of two 4th-order linear divisibility sequences A143699 and A241606. - Peter Bala, Apr 26 2014

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

A row of A116469. Bisection of A189005.

Programs

  • Maple
    seq(resultant(simplify(ChebyshevU(4,(x-4)*(1/2))), simplify(ChebyshevU(n-1,(1/2)*x)), x), n = 1 .. 14); # Peter Bala, Apr 27 2014
  • Mathematica
    a[n_] := 256^(n-1)*Product[Sin[(h*Pi)/10]^2 + Sin[(k*Pi)/(2*n)]^2, {h, 1, 4}, {k, 1, n-1}]; Table[a[n]//Round, {n, 1, 14}] (* Jean-François Alcover, Apr 28 2014 *)
  • PARI
    Vec(-x*(x^14-1440*x^12+26752*x^11-185889*x^10+574750*x^9-708928*x^8+708928*x^6-574750*x^5+185889*x^4-26752*x^3+1440*x^2-1)/(x^16-209*x^15+11936*x^14-274208*x^13+3112032*x^12-19456019*x^11+70651107*x^10-152325888*x^9+196664896*x^8-152325888*x^7+70651107*x^6-19456019*x^5+3112032*x^4-274208*x^3+11936*x^2-209*x+1)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2015

Formula

a(n) = 209 a(n-1)
- 11936 a(n-2)
+ 274208 a(n-3)
- 3112032 a(n-4)
+ 19456019 a(n-5)
- 70651107 a(n-6)
+ 152325888 a(n-7)
- 196664896 a(n-8)
+ 152325888 a(n-9)
- 70651107 a(n-10)
+ 19456019 a(n-11)
- 3112032 a(n-12)
+ 274208 a(n-13)
- 11936 a(n-14)
+ 209 a(n-15)
- a(n-16)
[Modified by Paul Raff, Oct 30 2009]
G.f.: -x(x^14-1440x^12+26752x^11 -185889x^10+574750x^9-708928x^8 +708928x^6-574750x^5+185889x^4 -26752x^3+1440x^2-1) / (x^16-209x^15 +11936x^14 -274208x^13+3112032x^12-19456019x^11 +70651107x^10 -152325888x^9 +196664896x^8 -152325888x^7+70651107x^6 -19456019x^5 +3112032x^4-274208x^3+11936x^2-209x+1).
From Peter Bala, Apr 26 2014: (Start)
a(n) = Resultant(U(4,(x-4)/2),U(n-1,x/2)), where U(n,x) denotes the Chebyshev polynomial of the second kind. The polynomial U(4,(x-4)/2) = 209 - 232*x + 93*x^2 - 16*x^3 + x^4 (see A159764) has zeros z_1 = (9 + sqrt(5))/2, z_2 = (9 - sqrt(5))/2, z_3 = (7 + sqrt(5))/2 and z_4 = (7 - sqrt(5))/2. Thus a(n) = U(n-1,1/2*z_1)*U(n-1,1/2*z_2)*U(n-1,1/2*z_3)*U(n-1,1/2*z_4).
a(n) = A143699(n)*A241606(n). (End)

Extensions

Recurrence from Faase's web page added by N. J. A. Sloane, Feb 03 2009
Showing 1-2 of 2 results.