cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A028468 Number of perfect matchings in graph P_{6} X P_{n}.

Original entry on oeis.org

1, 1, 13, 41, 281, 1183, 6728, 31529, 167089, 817991, 4213133, 21001799, 106912793, 536948224, 2720246633, 13704300553, 69289288909, 349519610713, 1765722581057, 8911652846951, 45005025662792, 227191499132401, 1147185247901449, 5791672851807479
Offset: 0

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • R. P. Stanley, Enumerative Combinatorics I, p. 292.

Crossrefs

Row 6 of arrays A099390, A189006.
Column k=2 of A251072.
Cf. A005178.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((1-x^2)*(x^3-5*x^2+6*x-1)*(x^3+ 6*x^2+5*x+1)) )); // G. C. Greubel, Nov 25 2018
    
  • Maple
    seq(coeff(series((1+2*x-x^2)*(x^4+2*x^3-3*x^2-2*x+1)/((x-1)*(x+1)*(x^3-5*x^2+6*x-1)*(x^3+6*x^2+5*x+1)),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Nov 23 2018
  • Mathematica
    a[n_] := Product[2(2 + Cos[(2 k Pi)/7] + Cos[(2 j Pi)/(n+1)]), {k, 1, 3}, {j, 1, n/2}] // Round;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 19 2018, after A099390 *)
    LinearRecurrence[{1, 20, 10, -38, -10, 20, -1, -1}, {1, 1, 13, 41, 281, 1183, 6728, 31529}, 30] (* Vincenzo Librandi, Nov 24 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(-(x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((x-1)*(1+x)*(x^3-5*x^2+6*x-1)*(x^3+6*x^2+5*x+1))) \\ Altug Alkan, Mar 23 2016
    
  • Sage
    s=((x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((1-x^2)*(x^3-5*x^2+6*x-1) *(x^3+6*x^2+5*x+1))).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 25 2018

Formula

From N. J. A. Sloane, Feb 03 2009: (Start)
a(1) = 1,
a(2) = 13,
a(3) = 41,
a(4) = 281,
a(5) = 1183,
a(6) = 6728,
a(7) = 31529,
a(8) = 167089,
a(9) = 817991,
a(10) = 4213133,
a(11) = 21001799,
a(12) = 106912793,
a(13) = 536948224,
a(14) = 2720246633, and
a(n) = 40*a(n-2) - 416*a(n-4) + 1224*a(n-6) - 1224*a(n-8) + 416*a(n-10) - 40*a(n-12) + a(n-14). (From Faase's web page.) (End)
G.f.: (x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1) / ( (1-x) *(1+x) *(x^3-5*x^2+6*x-1) *(x^3+6*x^2+5*x+1) ).
a(n) = a(n-1)+20*a(n-2)+10*a(n-3)-38*a(n-4)-10*a(n-5)+20*a(n-6)-a(n-7)-a(n-8). - Sergey Perepechko, Sep 23 2018

A210724 Number of domino tilings of the 11 X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 144, 780, 51205, 380160, 21001799, 170537640, 8940739824, 74795194705, 3852472573499, 32565539635200, 1666961188795475, 14143261515284447, 722364079570222320, 6136973985625588560, 313196612952258199679, 2662079368040434932480, 135818983640055277506397
Offset: 0

Views

Author

Alois P. Heinz, Mar 30 2012

Keywords

Crossrefs

11th row of array A189006.
Bisection gives: A028473 (even part), A139400 (odd part).

Programs

  • Mathematica
    A[1, 1] = 1;
    A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
    a[n_] := A[11, n];
    a /@ Range[0, 18] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)

Formula

a(n) = 780*a(n-2) -194881*a(n-4) +22377420*a(n-6)
-1419219792*a(n-8) +55284715980*a(n-10)
-1410775106597*a(n-12) +24574215822780*a(n-14)
-300429297446885*a(n-16) +2629946465331120*a(n-18)
-16741727755133760*a(n-20) +78475174345180080*a(n-22)
-273689714665707178*a(n-24) +716370537293731320*a(n-26)
-1417056251105102122*a(n-28) +2129255507292156360*a(n-30)
-2437932520099475424*a(n-32) +2129255507292156360*a(n-34)
-1417056251105102122*a(n-36) +716370537293731320*a(n-38)
-273689714665707178*a(n-40) +78475174345180080*a(n-42)
-16741727755133760*a(n-44) +2629946465331120*a(n-46)
-300429297446885*a(n-48) +24574215822780*a(n-50)
-1410775106597*a(n-52) +55284715980*a(n-54)
-1419219792*a(n-56) +22377420*a(n-58)
-194881*a(n-60) +780*a(n-62) -a(n-64).

A189003 Number of domino tilings of the 5 X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 8, 15, 95, 192, 1183, 2415, 14824, 30305, 185921, 380160, 2332097, 4768673, 29253160, 59817135, 366944287, 750331584, 4602858719, 9411975375, 57737128904, 118061508289, 724240365697, 1480934568960, 9084693297025, 18576479568193, 113956161827912
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Crossrefs

5th row of array A189006.
Bisections give: A003775 (even part), A006238 (odd part).

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|15|-32|15>>^iquo(n, 2, 'r').
            `if`(r=0, <<8, 1, 1, 8>>, <<1, 0, 1, 15>>))[3, 1]:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Product[2(2+Cos[2 j Pi/(n+1)]+Cos[k Pi/3]), {k, 1, 2}, {j, 1, n/2} ] // Round;
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 19 2018, after A099390 *)

Formula

G.f.: (x-1)*(1+x)*(x^4+x^3-6*x^2+x+1) / (-x^8+15*x^6-32*x^4+15*x^2-1).

A189004 Number of domino tilings of the 7 X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 21, 56, 781, 2415, 31529, 100352, 1292697, 4140081, 53175517, 170537640, 2188978117, 7022359583, 90124167441, 289143013376, 3710708201969, 11905151192865, 152783289861989, 490179860527896, 6290652543875133
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Crossrefs

7th row of array A189006.
Bisection gives: A028469 (even part), A003696 (odd part).

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
    a[n_] := A[7, n];
    a /@ Range[0, 20] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)

Formula

G.f.: -(x^14-x^13-35*x^12+277*x^10 +49*x^9-727*x^8 -112*x^7+727*x^6 +49*x^5-277*x^4 +35*x^2-x-1) / (x^16-56*x^14 +672*x^12-2632*x^10 +4094*x^8-2632*x^6 +672*x^4-56*x^2+1).

A189005 Number of domino tilings of the 9 X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 55, 209, 6336, 30305, 817991, 4140081, 108435745, 557568000, 14479521761, 74795194705, 1937528668711, 10021992194369, 259423766712000, 1342421467113969, 34741645659770711, 179796299139278305, 4652799879944138561
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Crossrefs

9th row of array A189006.
Bisection gives: A028471 (even part), A003779 (odd part).

Programs

  • Mathematica
    A[1, 1] = 1;
    A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
    a[n_] := A[9, n];
    a /@ Range[0, 18] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)

Formula

G.f.: -(x^30+x^29-154*x^28 +6777*x^26-1440*x^25-123961*x^24 +26752*x^23 +1132714*x^22-185889*x^21 -5684515*x^20+574750*x^19+16401668*x^18 -708928*x^17 -27757938*x^16+27757938*x^14+708928*x^13 -16401668*x^12 -574750*x^11+5684515*x^10 +185889*x^9-1132714*x^8-26752*x^7 +123961*x^6 +1440*x^5-6777*x^4+154*x^2-x-1) / (x^32-209*x^30+11936*x^28 -274208*x^26 +3112032*x^24-19456019*x^22 +70651107*x^20-152325888*x^18+196664896*x^16 -152325888*x^14+70651107*x^12 -19456019*x^10 +3112032*x^8-274208*x^6 +11936*x^4-209*x^2+1).

A189002 Number of domino tilings of the n X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 2, 4, 36, 192, 6728, 100352, 12988816, 557568000, 258584046368, 32565539635200, 53060477521960000, 19872369301840986112, 112202208776036178000000, 126231322912498539682594816, 2444888770250892795802079170816, 8326627661691818545121844900397056
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Examples

			a(3) = 4 because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
  . .___.  . .___.  . .___.  . .___.
  ._|___|  ._|___|  ._| | |  ._|___|
  | |___|  | | | |  | |_|_|  |___| |
  |_|___|  |_|_|_|  |_|___|  |___|_|
		

Crossrefs

Main diagonal of A189006.
Bisection gives: A004003 (even part), A007341 (odd part).

Programs

  • Mathematica
    A[1, 1] = 1;
    A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
    a[n_] := A[n, n];
    a /@ Range[0, 17] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)

Formula

a(n) = A189006(n,n).

A270668 Triangle read by rows: The number of domino tilings of the (2n+1) X (2m+1) board with a central free square.

Original entry on oeis.org

1, 0, 2, 1, 0, 196, 0, 32, 0, 75272, 1, 0, 31329, 0, 599466256, 0, 450, 0, 135663392, 0, 28838245503008, 1, 0, 4941729, 0, 10956424382401, 0, 22463213552677201984, 0, 6272, 0, 233075146752, 0, 5652453608244879872, 0, 123818965842734619629420672
Offset: 0

Views

Author

R. J. Mathar, Mar 21 2016

Keywords

Comments

Arrangements obtained by rotations and flips are counted as distinct.

Examples

			For n=m=1, the 3 X 3 board can be covered in T(1,1)=2 ways, starting in one corner with either a horizontal or a vertical domino.
Triangle begins:
1;
0, 2;
1, 0, 196;
0, 32, 0, 75272;
1, 0, 31329, 0, 599466256;
0, 450, 0, 135663392, 0, 28838245503008;
1, 0, 4941729, 0, 10956424382401, 0, 22463213552677201984;
		

Crossrefs

Cf. A098301, A143659 (diagonal), A189006 (free square in corner).

Formula

T(n,0) = A059841(n).
T(2n+1,1) = 2 * A098301(n+1). - Alois P. Heinz, Mar 21 2016
T(2n+1,1) = 2*A189006(2n+1,3)^2. - R. J. Mathar, Mar 22 2016
Conjectured g.f. for column 3: ( -1 -4*x +543*x^2 -6238*x^3 +17032*x^4 -6238*x^5 +543*x^6 -4*x^7 -x^8 ) / ( (x-1) *(x^2-7*x+1) *(x^2-23*x+1) *(x^4 -161*x^3 +576*x^2 -161*x +1) ). - R. J. Mathar, Mar 23 2016

Extensions

More terms from Alois P. Heinz, Mar 21 2016
Showing 1-7 of 7 results.