A099390
Array T(m,n) read by antidiagonals: number of domino tilings (or dimer tilings) of the m X n grid (or m X n rectangle), for m>=1, n>=1.
Original entry on oeis.org
0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 5, 0, 5, 0, 1, 8, 11, 11, 8, 1, 0, 13, 0, 36, 0, 13, 0, 1, 21, 41, 95, 95, 41, 21, 1, 0, 34, 0, 281, 0, 281, 0, 34, 0, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 0, 89, 0, 2245, 0, 6728, 0, 2245, 0, 89, 0, 1, 144, 571, 6336, 14824, 31529, 31529, 14824, 6336, 571, 144, 1
Offset: 1
0, 1, 0, 1, 0, 1, ...
1, 2, 3, 5, 8, 13, ...
0, 3, 0, 11, 0, 41, ...
1, 5, 11, 36, 95, 281, ...
0, 8, 0, 95, 0, 1183, ...
1, 13, 41, 281, 1183, 6728, ...
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
- P. E. John, H. Sachs, and H. Zernitz, Problem 5. Domino covers in square chessboards, Zastosowania Matematyki (Applicationes Mathematicae) XIX 3-4 (1987), 635-641.
- R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 2nd ed., pp. 547 and 570.
- Darko Veljan, Kombinatorika: s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.
- Alois P. Heinz, Table of n, a(n) for n = 1..1035
- M. Aanjaneya and S. P. Pal, Faultfree tromino tilings of rectangles, arXiv:math/0610925 [math.CO], 2006.
- Mudit Aggarwal and Samrith Ram, Generating Functions for Straight Polyomino Tilings of Narrow Rectangles, J. Int. Seq., Vol. 26 (2023), Article 23.1.4.
- F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
- M. Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, Journal of Combinatorial Theory, Series A, Volume 77, Issue 1, January 1997, Pages 67-97.
- Henry Cohn, 2-adic behavior of numbers of domino tilings, arXiv:math/0008222 [math.CO], 2000.
- Henry Cohn, 2-adic behavior of numbers of domino tilings, Electronic Journal of Combinatorics, 6 (1999), #R14.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- Steven R. Finch, The Dimer Problem [From Steven Finch, Apr 20 2019]
- Steven R. Finch, Two Dimensional Monomer Dimer Constant [Broken link]
- M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Physical Review, 124 (1961), 1664-1672.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 363.
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015.
- W. Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
- Peter E. John and Horst Sachs, On a strange observation in the theory of the dimer problem, arXiv:math/9801094 [math.CO], 1998.
- Peter E. John and Horst Sachs, On a strange observation in the theory of the dimer problem, Discrete Math. 216 (2000), no. 1-3, 211-219.
- Yuhi Kamio, Junnosuke Koizumi, and Toshihiko Nakazawa, Quadratic residues and domino tilings, arXiv:2311.13597 [math.NT], 2023.
- David Klarner and Jordan Pollack, Domino tilings of rectangles with fixed width, Disc. Math. 32 (1980) 45-52, Table 1.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- P. W. Kasteleyn, The statistics of dimers on a lattice, I. the number of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1209-1225.
- Douglas M. McKenna, The Art of Space-Filling Domino Curves, Bridges Conference Proceedings, 2024, pp. 319-326.
- L. Pachter, Combinatorial approaches and conjectures for 2-divisibility problems concerning domino tilings of polyominoes, Electronic Journal of Combinatorics 4 (1997), #R29.
- J. Propp, Dimers and Dominoes
- J. Propp, Enumeration of Matchings: Problems and Progress, arXiv:math/9904150v2 [math.CO], 1999.
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
- R. C. Read, A Note on Tiling Rectangles with Dominoes, The Fibonacci Quarterly, 18.1 (1980), 24-27.
- R. P. Stanley, A combinatorial miscellany
- H. N. V. Temperley and Michael E. Fisher, Dimer problem in statistical mechanics -- an exact result, Philos. Mag. (8) 6 (1961), 1061-1063.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Domino Tiling
- Eric Weisstein, Illustration for T(4,4) = 36, from Domino Tilings web page (see previous link) [Included with permission]
- Index entries for sequences related to dominoes
See also
A004003 for more literature on the dimer problem.
Rows 2-13, 16 (without zeros) are
A000045,
A001835,
A005178,
A003775,
A028468,
A028469,
A028470,
A028471,
A028472,
A028473,
A028474,
A241908,
A340532.
-
(Maple code for the even-numbered rows from N. J. A. Sloane, Mar 15 2015. This is not totally satisfactory since it uses floating point. However, it is useful for getting the initial values quickly.)
Digits:=100;
p:=evalf(Pi);
z:=proc(h,d) global p; evalf(cos( h*p/(2*d+1) )); end;
T:=proc(m,n) global z; round(mul( mul( 4*z(h,m)^2+4*z(k,n)^2, k=1..n), h=1..m)); end;
[seq(T(1,n),n=0..10)]; # A001519
[seq(T(2,n),n=0..10)]; # A188899
[seq(T(3,n),n=0..10)]; # A256044
[seq(T(n,n),n=0..10)]; # A004003
-
T[?OddQ, ?OddQ] = 0;
T[m_, n_] := Product[2*(2+Cos[2j*Pi/(m+1)]+Cos[2k*Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
Flatten[Table[Round[T[m-n+1, n]], {m, 1, 12}, {n, 1, m}]] (* Jean-François Alcover, Nov 25 2011, updated May 28 2022 *)
-
{T(n, k) = sqrtint(abs(polresultant(polchebyshev(n, 2, x/2), polchebyshev(k, 2, I*x/2))))} \\ Seiichi Manyama, Apr 13 2020
A005178
Number of domino tilings of 4 X (n-1) board.
Original entry on oeis.org
0, 1, 1, 5, 11, 36, 95, 281, 781, 2245, 6336, 18061, 51205, 145601, 413351, 1174500, 3335651, 9475901, 26915305, 76455961, 217172736, 616891945, 1752296281, 4977472781, 14138673395, 40161441636, 114079985111, 324048393905
Offset: 0
For n=2 the graph is
o-o-o-o
and there is one perfect tiling:
o-o o-o
For n=3 the graph is
o-o-o-o
| | | |
o-o-o-o
and there are five perfect tilings:
o o o o
| | | |
o o o o
two like:
o o o-o
| | ...
o o o-o
and this
o-o o-o
.......
o-o o-o
and this
o o-o o
| ... |
o o-o o
a(n+1)=r(n)-r(n-2), r(n)=if n=0 then 1 else sum(sum(binomial(k,j)*sum(binomial(j,i-j)*5^(i-j)*binomial(k-j,n-i-3*(k-j))*(-1)^(n-i-3*(k-j)),i,j,n-k+j),j,0,k),k,1,n), n>1. - _Vladimir Kruchinin_, Sep 08 2010
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics I, p. 292.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Steve Butler, Jason Ekstrand, and Steven Osborne, Counting Tilings by Taking Walks in a Graph, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 158.
- Curtis Cooper and Robert E. Kennedy, Problem B-735: Soln 1, Problem B-735: Soln 2, Square Root of a Recurrence, The Fibonacci Quarterly, 32(2):185-186, May 1994, and 32(4):374-375, Aug 1994.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Simone Rinaldi and D. G. Rogers, Indecomposability: polyominoes and polyomino tilings, The Mathematical Gazette 92.524 (2008): 193-204.
- David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982.
- Thotsaporn "Aek" Thanatipanonda, Statistics of Domino Tilings on a Rectangular Board, Fibonacci Quart. 57 (2019), no. 5, 145-153. See p. 151.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Li Zhou, Northwestern University Math Problem Solving Group, Christopher Carl Heckman and Jerry Minkus, Tiling 4-Rowed Rectangles with Dominoes: 11187, The American Mathematical Monthly 114 (2007): 554-556.
- Index to divisibility sequences
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (1,5,1,-1).
-
a[0]:=1: a[1]:=1: a[2]:=5: a[3]:=11: for n from 4 to 26 do a[n]:=a[n-1]+5*a[n-2]+a[n-3]-a[n-4] od: seq(a[n],n=0..26); # Emeric Deutsch, Oct 16 2006
A005178:=-(-1-4*z-z**2+z**3)/(1-z-5*z**2-z**3+z**4) # conjectured (correctly) by Simon Plouffe in his 1992 dissertation; gives sequence apart from an initial 1
-
CoefficientList[Series[x(1-x^2)/(1-x-5x^2-x^3+x^4), {x,0,30}], x] (* T. D. Noe, Dec 22 2008 *)
LinearRecurrence[{1, 5, 1, -1}, {0, 1, 1, 5}, 28] (* Robert G. Wilson v, Aug 08 2011 *)
a[0] = 0; a[n_] := Product[2(2+Cos[2j Pi/5]+Cos[2k Pi/n]), {k, 1, (n-1)/2}, {j, 1, 2}] // Round;
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 20 2018 *)
-
r(n):=if n=0 then 1 else sum(sum(binomial(k,j)*sum(binomial(j,i-j)*5^(i-j)*binomial(k-j,n-i-3*(k-j))*(-1)^(n-i-3*(k-j)),i,j,n-k+j),j,0,k),k,1,n); a(n):=r(n)-r(n-2); /* Vladimir Kruchinin, Sep 08 2010 */
Amalgamated with (former)
A003692, Dec 30 1995
Name changed and 0 prepended by
T. D. Noe, Dec 22 2008
A251072
Number A(n,k) of tilings of a 3k X n rectangle using 3n k-ominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 41, 1, 1, 1, 1, 1, 19, 281, 1, 1, 1, 1, 1, 1, 57, 1183, 1, 1, 1, 1, 1, 1, 26, 121, 6728, 1, 1, 1, 1, 1, 1, 1, 75, 783, 31529, 1, 1, 1, 1, 1, 1, 1, 34, 154, 2861, 167089, 1, 1, 1, 1, 1, 1, 1, 1, 95, 269, 8133, 817991, 1, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 13, 1, 1, 1, 1, 1, 1, ...
1, 1, 41, 19, 1, 1, 1, 1, 1, ...
1, 1, 281, 57, 26, 1, 1, 1, 1, ...
1, 1, 1183, 121, 75, 34, 1, 1, 1, ...
1, 1, 6728, 783, 154, 95, 43, 1, 1, ...
1, 1, 31529, 2861, 269, 190, 117, 53, 1, ...
1, 1, 167089, 8133, 1732, 325, 229, 141, 64, ...
Columns k=0+1,2-10 give:
A000012,
A028468,
A251073,
A251074,
A247218,
A251075,
A251076,
A251077,
A251078,
A251079.
-
b:= proc(n, l) option remember; local d, k; d:= nops(l)/3;
if n=0 then 1
elif min(l[])>0 then (m->b(n-m, map(x->x-m, l)))(min(l[]))
else for k while l[k]>0 do od;
`if`(n2*d+1 or max(l[k..k+d-1][])>0, 0,
b(n, [l[1..k-1][], 1$d, l[k+d..3*d][]]))
fi
end:
A:= (n, k)-> `if`(k=0, 1, b(n, [0$3*k])):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, l_List] := b[n, l] = Module[{d = Length[l]/3, k}, Which[n == 0, 1, Min[l] > 0, Function[{m}, b[n-m, l-m]][Min[l]], True, For[k=1, l[[k]] > 0 , k++]; If[n d]]] + If[d == 1 || k > 2d + 1 || Max[l[[k ;; k + d - 1]]] > 0, 0, b[n, Join[l[[1 ;; k-1]], Array[1&, d], l[[k+d ;; 3*d]]]]]]]; A[n_, k_] := If[k == 0, 1, b[n, Array[0&, 3k]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)
A189006
Array A(m,n) read by antidiagonals: number of domino tilings of the m X n grid with upper left corner removed iff m*n is odd, (m>=0, n>=0).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 15, 36, 15, 13, 1, 1, 1, 1, 21, 41, 95, 95, 41, 21, 1, 1, 1, 1, 34, 56, 281, 192, 281, 56, 34, 1, 1, 1, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 1, 1, 1, 89, 209, 2245, 2415, 6728, 2415, 2245, 209, 89, 1, 1
Offset: 0
A(3,3) = 4, because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
. .___. . .___. . .___. . .___.
._|___| ._|___| ._| | | ._|___|
| |___| | | | | | |_|_| |___| |
|_|___| |_|_|_| |_|___| |___|_|
Array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, ...
1, 1, 3, 4, 11, 15, 41, ...
1, 1, 5, 11, 36, 95, 281, ...
1, 1, 8, 15, 95, 192, 1183, ...
1, 1, 13, 41, 281, 1183, 6728, ...
Rows m=0+1, 2-12 give:
A000012,
A000045(n+1),
A002530(n+1),
A005178(n+1),
A189003,
A028468,
A189004,
A028470,
A189005,
A028472,
A210724,
A028474.
-
with(LinearAlgebra):
A:= proc(m, n) option remember; local i, j, s, t, M;
if m=0 or n=0 then 1
elif m1 or j>1 or s=0 then
if j
-
A[1, 1] = 1; A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2];M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j-s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1-2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m-s, n*m-s}]]]]]; Table[Table[A[m, d-m], {m, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 26 2013, translated from Maple *)
A028471
Number of perfect matchings (or domino tilings) in the graph P_9 X P_2n.
Original entry on oeis.org
1, 55, 6336, 817991, 108435745, 14479521761, 1937528668711, 259423766712000, 34741645659770711, 4652799879944138561, 623139489426439754945, 83456125990631342400791, 11177167872295392172767936, 1496943834332592837945956455, 200483802581126644843760725601
Offset: 0
- Sean A. Irvine, Table of n, a(n) for n = 0..150
- J. L. Hock and R. B. McQuistan, A note on the occupational degeneracy for dimers on a saturated two-dimensional lattice space, Discrete Applied Mathematics, 1984, v.8, 101-104.
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- Index entries for linear recurrences with constant coefficients, signature (209, -11936, 274208, -3112032, 19456019, -70651107, 152325888, -196664896, 152325888, -70651107, 19456019, -3112032, 274208, -11936, 209, -1).
-
T[?OddQ, ?OddQ] = 0;
T[m_, n_] := Product[2(2+Cos[2 j Pi/(m+1)]+Cos[2 k Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
a[n_] := T[2n, 9] // Round;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2022 *)
-
{a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(9, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
Original entry on oeis.org
1, 13, 281, 6728, 167089, 4213133, 106912793, 2720246633, 69289288909, 1765722581057, 45005025662792, 1147185247901449, 29242880940226381, 745439797095329713, 19002353776441540177, 484398978524471931341, 12348080425980866090537, 314771823879840325570888
Offset: 0
-
I:=[1,13,281,6728,167089,4213133,106912793]; [n le 7 select I[n] else 40*Self(n-1)-416*Self(n-2)+1224*Self(n-3)-1224*Self(n-4)+416*Self(n-5)-40*Self(n-6)+Self(n-7): n in [1..30]]; // Vincenzo Librandi, Aug 20 2018
-
a[n_] := Product[2(2+Cos[2j Pi/7]+Cos[2k Pi/(2n+1)]), {k, 1, n}, {j, 1, 3}] // Round;
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 20 2018 *)
LinearRecurrence[{40, -416, 1224, -1224, 416, -40, 1}, {1, 13, 281, 6728, 167089, 4213133, 106912793}, 20] (* Vincenzo Librandi, Aug 20 2018 *)
-
x='x+O('x^100); Vec(-(x^6-27*x^5+177*x^4-328*x^3+177*x^2-27*x+1)/((x-1)*(x^3-26*x^2+13*x-1)*(x^3-13*x^2+26*x-1))) \\ Altug Alkan, Mar 23 2016
Showing 1-6 of 6 results.
Comments