cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A099390 Array T(m,n) read by antidiagonals: number of domino tilings (or dimer tilings) of the m X n grid (or m X n rectangle), for m>=1, n>=1.

Original entry on oeis.org

0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 5, 0, 5, 0, 1, 8, 11, 11, 8, 1, 0, 13, 0, 36, 0, 13, 0, 1, 21, 41, 95, 95, 41, 21, 1, 0, 34, 0, 281, 0, 281, 0, 34, 0, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 0, 89, 0, 2245, 0, 6728, 0, 2245, 0, 89, 0, 1, 144, 571, 6336, 14824, 31529, 31529, 14824, 6336, 571, 144, 1
Offset: 1

Views

Author

Ralf Stephan, Oct 16 2004

Keywords

Comments

There are many versions of this array (or triangle) in the OEIS. This is the main entry, which ideally collects together all the references to the literature and to other versions in the OEIS. But see A004003 for further information. - N. J. A. Sloane, Mar 14 2015

Examples

			0,  1,  0,   1,    0,    1, ...
1,  2,  3,   5,    8,   13, ...
0,  3,  0,  11,    0,   41, ...
1,  5, 11,  36,   95,  281, ...
0,  8,  0,  95,    0, 1183, ...
1, 13, 41, 281, 1183, 6728, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
  • P. E. John, H. Sachs, and H. Zernitz, Problem 5. Domino covers in square chessboards, Zastosowania Matematyki (Applicationes Mathematicae) XIX 3-4 (1987), 635-641.
  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 2nd ed., pp. 547 and 570.
  • Darko Veljan, Kombinatorika: s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.

Crossrefs

See A187596 for another version (with m >= 0, n >= 0). See A187616 for a triangular version. See also A187617, A187618.
See also A004003 for more literature on the dimer problem.
Main diagonal is A004003.

Programs

  • Maple
    (Maple code for the even-numbered rows from N. J. A. Sloane, Mar 15 2015. This is not totally satisfactory since it uses floating point. However, it is useful for getting the initial values quickly.)
    Digits:=100;
    p:=evalf(Pi);
    z:=proc(h,d) global p; evalf(cos( h*p/(2*d+1) )); end;
    T:=proc(m,n) global z; round(mul( mul( 4*z(h,m)^2+4*z(k,n)^2, k=1..n), h=1..m)); end;
    [seq(T(1,n),n=0..10)]; # A001519
    [seq(T(2,n),n=0..10)]; # A188899
    [seq(T(3,n),n=0..10)]; # A256044
    [seq(T(n,n),n=0..10)]; # A004003
  • Mathematica
    T[?OddQ, ?OddQ] = 0;
    T[m_, n_] := Product[2*(2+Cos[2j*Pi/(m+1)]+Cos[2k*Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
    Flatten[Table[Round[T[m-n+1, n]], {m, 1, 12}, {n, 1, m}]] (* Jean-François Alcover, Nov 25 2011, updated May 28 2022 *)
  • PARI
    {T(n, k) = sqrtint(abs(polresultant(polchebyshev(n, 2, x/2), polchebyshev(k, 2, I*x/2))))} \\ Seiichi Manyama, Apr 13 2020

Formula

T(m, n) = Product_{j=1..ceiling(m/2)} Product_{k=1..ceiling(n/2)} (4*cos(j*Pi/(m+1))^2 + 4*cos(k*Pi/(n+1))^2).

Extensions

Old link fixed and new link added by Frans J. Faase, Feb 04 2009
Entry edited by N. J. A. Sloane, Mar 15 2015

A189005 Number of domino tilings of the 9 X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 55, 209, 6336, 30305, 817991, 4140081, 108435745, 557568000, 14479521761, 74795194705, 1937528668711, 10021992194369, 259423766712000, 1342421467113969, 34741645659770711, 179796299139278305, 4652799879944138561
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Crossrefs

9th row of array A189006.
Bisection gives: A028471 (even part), A003779 (odd part).

Programs

  • Mathematica
    A[1, 1] = 1;
    A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
    a[n_] := A[9, n];
    a /@ Range[0, 18] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)

Formula

G.f.: -(x^30+x^29-154*x^28 +6777*x^26-1440*x^25-123961*x^24 +26752*x^23 +1132714*x^22-185889*x^21 -5684515*x^20+574750*x^19+16401668*x^18 -708928*x^17 -27757938*x^16+27757938*x^14+708928*x^13 -16401668*x^12 -574750*x^11+5684515*x^10 +185889*x^9-1132714*x^8-26752*x^7 +123961*x^6 +1440*x^5-6777*x^4+154*x^2-x-1) / (x^32-209*x^30+11936*x^28 -274208*x^26 +3112032*x^24-19456019*x^22 +70651107*x^20-152325888*x^18+196664896*x^16 -152325888*x^14+70651107*x^12 -19456019*x^10 +3112032*x^8-274208*x^6 +11936*x^4-209*x^2+1).

A241908 Number of perfect matchings in graph P_{13} X P_{2n}.

Original entry on oeis.org

1, 377, 413351, 536948224, 731164253833, 1012747193318519, 1412218550274852671, 1974622635952709613247, 2764079753958605286860951, 3870940598132705729413670953, 5422065916132126528319352874496, 7595338059193606161156363370300487, 10640045682768766172108553992086690201
Offset: 0

Views

Author

Sergey Perepechko, May 01 2014

Keywords

Comments

In Karavaev and Perepechko generating functions G_m(x) for P_m X P_n graphs were found for all values of m up to 27.

References

  • A. M. Karavaev and S. N. Perepechko, Generating functions for dimer problem on rectangular lattices (in Russian), Information Processes, 13(2013), No4, 374-400.

Crossrefs

Row 13 of array A099390.

Programs

  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(13, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020

A360799 Numbers m with m mod 3 = q, q != 2, such that the number of ones in its base-2 representation is even if q=0 and odd if q=1.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 12, 13, 15, 16, 18, 19, 22, 24, 25, 27, 28, 30, 31, 33, 36, 37, 39, 45, 48, 49, 51, 52, 54, 55, 57, 60, 61, 63, 64, 66, 67, 70, 72, 73, 75, 76, 78, 79, 82, 88, 90, 91, 94, 96, 97, 99, 100, 102, 103, 105, 108, 109, 111, 112, 114, 115, 118, 120, 121
Offset: 0

Views

Author

Gerhard Kirchner, Feb 24 2023

Keywords

Comments

For q=0, the terms in A180963 are excluded.
The terms of the sequence occur, with some exceptions, while tiling a wall (odd width w) with 1 X 2 dominos. The current tiling status can be described by a number x with 0 <= x < 2^w. In the base-2 representation, 1 stands for an overstanding unit square, see example.
Statement:
The tiling always starts with q=1 and an odd number of ones (type 1) and is followed by a term with q=0 and an even number of ones (type 2) and so on, alternately.
Proof:
Start, provisionally, with w upright dominos. The corresponding term is x = (11..1) = 2^w-1 with x mod 3 = 1 (type 1). Another first profile can be generated by replacing a pair of adjacent upright dominos with one flat domino. In the base-2 representation, this is the subtraction (11..11..1) - (00..11..0) = (11..00..1). The subtrahend is 3*2^j with 0 <= j < w. Therefore, the modified term also is type 1. This way, any first profile can be found and it is type 1.
In the next provisional step, an upright domino is placed on each not overstanding unit square. If p1 is the first profile, then the second is p2 = 2^w - 1 - p1 with p2 mod 3 = 0. Moreover, the transition from p1 to p2 exchanges the ones and zeros such that p2 is type 2. Again, replacing adjacent upright dominos by one flat domino does not change the type of the profile. The next profile is type 1 and so on. QED. Condition to be satisfied by a tiling profile: The continued removal of 00 and 11 (reduction) leads to (0) or (1). Example: a(10)=18=(10010) -> (110) -> (0). The first exceptions are a(314) = 682 = (01010101010), a(611) = 1365 = (10101010101) and a(988) = 2218 = (0100010101010). Note that the reduction of 2218 is 682.

Examples

			 5 X 4 wall is tiled bottom-up with 1 X 2 dominos:
                                      _    ___ ___ _
                 _ _          _ _ ___| |  |_ _|___| |
        _       | | |_ ___   | | |_ _|_|  | | |_ _|_|
    ___| |___   |_|_| |___|  |_|_| |___|  |_|_| |___|
   |___|_|___|  |___|_|___|  |___|_|___|  |___|_|___|
    0 0 1 0 0    1 1 0 0 0    0 0 0 0 1    0 0 0 0 0
     4 = a(3)   24 = a(14)     1 = a(1)     0 = a(0)
		

Crossrefs

Programs

  • Maxima
    block(kmax: 100, a:[],
     even_ones(x):= block(su:0,
      while x>0 do(p: mod(x,2), x:(x-p)/2, su:su+p),
       return(mod(su,2))),
    for k from 0 thru kmax do(r:mod(k,3),
     if r<2 and r=even_ones(k) then a:append(a,[k])),a);
    
  • PARI
    isok(m) = my(k=m%3); if (hammingweight(m) % 2, k==1, k==0); \\ Michel Marcus, Feb 27 2023

A360800 Numbers Sum_{i=1..2r+1} 2^k(i) such that k(1) is even and, for r > 0 and i < 2r+1, the difference k(i+1)-k(i) is > 0 and odd.

Original entry on oeis.org

1, 4, 7, 16, 19, 25, 28, 31, 64, 67, 73, 76, 79, 97, 100, 103, 112, 115, 121, 124, 127, 256, 259, 265, 268, 271, 289, 292, 295, 304, 307, 313, 316, 319, 385, 388, 391, 400, 403, 409, 412, 415, 448, 451, 457, 460, 463, 481, 484, 487, 496, 499, 505, 508, 511, 1024
Offset: 1

Views

Author

Gerhard Kirchner, Feb 24 2023

Keywords

Comments

This is a subsequence of A360799. Another description of the terms: in the base-2 representation, the number of ones is odd and all zeros are grouped in blocks of even length.
That is why the terms less than 2^(2j+1) describe start profiles for tiling a (2j+1) X m wall with 1 X 2 dominos, see examples and A360799.

Examples

			A 5 X m wall is tiled bottom-up with dominos, start profiles:
            _        _            _ _ _    _     _ _    _ _ _ _ _
    ___ ___| |   ___| |___    ___| | | |  | |___| | |  | | | | | |
   |___|___|_|  |___|_|___|  |___|_|_|_|  |_|___|_|_|  |_|_|_|_|_|
    0 0 0 0 1    0 0 1 0 0    0 0 1 1 1    1 0 0 1 1    1 1 1 1 1
    1 = a(1)     4 = a(2)     7 = a(3)     19 = a(5)    31 = a(7)
    also the mirror images of 1 (16), 19 (25) and 7 (28).
		

Crossrefs

Programs

  • Maxima
    block(kmax: 100, a:[],
     oddsum(y):= block(su1:0, su2:0, pold:0, ok: true,
      while y>0 and ok do(p:mod(y,2), y:(y-p)/2,
       if p=1 then(if pold=0 and su2=1 then ok:false, su1:1-su1, su2:0)
       elseif p=0 then su2:1-su2, pold:p), return(is(ok and su1=1))),
    for k from 1 thru kmax do if oddsum(k) then a:append(a,[k]),a);
Showing 1-5 of 5 results.