A182368
Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square grid graph G_(n,n), highest powers first.
Original entry on oeis.org
1, 0, 1, -4, 6, -3, 0, 1, -12, 66, -216, 459, -648, 594, -323, 79, 0, 1, -24, 276, -2015, 10437, -40614, 122662, -292883, 557782, -848056, 1022204, -960627, 682349, -346274, 112275, -17493, 0, 1, -40, 780, -9864, 90798, -647352, 3714180, -17590911, 69997383
Offset: 1
3 example graphs: o---o---o
. | | |
. o---o o---o---o
. | | | | |
. o o---o o---o---o
Graph: G_(1,1) G_(2,2) G_(3,3)
Vertices: 1 4 9
Edges: 0 4 12
The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1, 0;
1, -4, 6, -3, 0;
1, -12, 66, -216, 459, -648, 594, ...
1, -24, 276, -2015, 10437, -40614, 122662, ...
1, -40, 780, -9864, 90798, -647352, 3714180, ...
1, -60, 1770, -34195, 486210, -5421612, 49332660, ...
1, -84, 3486, -95248, 1926585, -30755376, 403410654, ...
1, -112, 6216, -227871, 6205479, -133865298, 2382122274, ...
1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ...
...
Sums of absolute values of row elements give:
A080690(n).
-
Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *)
A007341
Number of spanning trees in n X n grid.
Original entry on oeis.org
1, 4, 192, 100352, 557568000, 32565539635200, 19872369301840986112, 126231322912498539682594816, 8326627661691818545121844900397056, 5694319004079097795957215725765328371712000, 40325021721404118513276859513497679249183623593590784, 2954540993952788006228764987084443226815814190099484786032640000
Offset: 1
From _M. F. Hasler_, Mar 07 2018: (Start)
For n = 1, there exists only one 0 X 0 matrix, e_0 = []; it is the neutral element of the singleton group S(0) = {[]}.
For n = 2, the sandpile addition is isomorphic to addition in Z/4Z, the neutral element is e_1 = [0] and we get the group S(1) isomorphic to (Z/4Z, +).
For n = 3, one finds that e_2 = [2,2;2,2] is the neutral element of the sandpile addition restricted to S(2), having 192 elements, listed in A300006.
For n = 4, one finds that e_3 = [2,1,2;1,0,1;2,1,2] is the neutral element of the sandpile addition restricted to S(3), having 100352 elements.
For n = 5, the neutral element is e_4 = [2,3,3,2; 3,2,2,3; 3,2,2,3; 2,3,3,2]. (End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..45
- Anakin Dey, Sam Ruggerio, and Melkior Ornik, Optimizing a Model-Agnostic Measure of Graph Counterdeceptiveness via Reattachment, arXiv:2311.15093 [math.OC], 2023. See p. 10.
- Noah Doman, The Identity of the Abelian Sandpile Group, Bachelor Thesis, University of Groningen (Netherlands 2020).
- Laura Florescu, Daniela Morar, David Perkinson, Nick Salter and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015), Paper #P1.66
- Luis David Garcia-Puente and Brady Haran, Sandpiles, Numberphile video, on YouTube.com, Jan. 13, 2017
- Antal A. Járai, Sandpile models, arXiv:1401.0354 [math.PR], 2014.
- Germain Kreweras, Complexite et circuits Euleriens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- Lionel Levine and James Propp, What is... a sandpile?, Notices of the AMS, Volume 57 (2010), Number 8, 976-979.
- F. Redig, Mathematical aspects of the abelian sandpile model (2005)
- W.-J. Tzeng, F. Y. Wu, Spanning Trees on Hypercubic Lattices and Non-orientable Surfaces. arXiv:cond-mat/0001408v1 [cond-mat.stat-mech], Jan 2000.
- W.-J. Tzeng and F. Y. Wu, Dimers on a simple-quartic net with a vacancy, arXiv:cond-mat/0203149v2 [cond-mat.stat-mech], Mar 2002.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- David B. Wilson, Local statistics of the abelian sandpile model (2014)
- F. Y. Wu, Number of spanning trees on a lattice, J. Phys. A: Math. Gen., 10 (1977) no. 6, L113-L115.
- Index to divisibility sequences
Cf.
A080690 (number of acyclic orientations),
A080691 (number of spanning forests),
A349718 (number of spanning trees, reduced for symmetry).
-
a:= n-> round(evalf(2^(n^2-1) /n^2 *mul(mul(`if`(j<>0 or k<>0, 2 -cos(Pi*j/n) -cos(Pi*k/n), 1), k=0..n-1), j=0..n-1), 15 +n*(n+1)/2)): seq(a(n), n=1..20); # Alois P. Heinz, Apr 15 2011
# uses expression as a resultant
seq(resultant(simplify(ChebyshevU(n-1, x/2)), simplify(ChebyshevU(n-1, (4-x)/2)), x), n = 1 .. 24); # Peter Bala, Apr 29 2014
-
Table[2^((n-1)^2) Product[(2 - Cos[Pi i/n] - Cos[Pi j/n]), {i, 1, n-1}, {j, 1, n-1}], {n, 12}] // Round
Table[Resultant[ChebyshevU[n-1, x/2], ChebyshevU[n-1, (4-x)/2], x], {n, 1, 12}] (* Vaclav Kotesovec, Apr 15 2020 *)
-
{a(n) = polresultant( polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2) )}; /* Michael Somos, Aug 12 2017 */
A080691
Number of spanning forests of the n X n grid graph.
Original entry on oeis.org
1, 15, 3102, 8790016, 341008617408, 181075508242067552, 1315927389374152034113856, 130877523274817580209987036404864, 178135975585132088643635627145305047963624, 3318089946193080260596185780557019330240985991363200, 845810281460839114896541390288164525407725177643901666416522016
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..15
- N. Calkin, C. Merino, S. Noble and M. Noy, Improved Bounds for the Number of Forests and Acyclic Orientations in the Square Lattice, The Electronic Journal of Combinatorics, Volume 10(1), 2003, #R4.
- A. Pönitz, Über eine Methode zur Konstruktion von Algorithmen für die Berechnung von Invarianten in endlichen ungerichteten Hypergraphen, PhD Thesis (2004) C.3.
- Peter Tittmann, More Results [Gives a(1)-a(14)]
- Eric Weisstein's World of Mathematics, Grid Graph
A360922
Array read by antidiagonals: T(m,n) is the number of acyclic orientations in the grid graph P_m X P_n.
Original entry on oeis.org
1, 2, 2, 4, 14, 4, 8, 98, 98, 8, 16, 686, 2398, 686, 16, 32, 4802, 58670, 58670, 4802, 32, 64, 33614, 1435414, 5015972, 1435414, 33614, 64, 128, 235298, 35118638, 428816558, 428816558, 35118638, 235298, 128, 256, 1647086, 859207558, 36659327366, 128091434266, 36659327366, 859207558, 1647086, 256
Offset: 1
Array begins:
=====================================================
m\n| 1 2 3 4 5 ...
---+-------------------------------------------------
1 | 1 2 4 8 16 ...
2 | 2 14 98 686 4802 ...
3 | 4 98 2398 58670 1435414 ...
4 | 8 686 58670 5015972 428816558 ...
5 | 16 4802 1435414 428816558 128091434266 ...
6 | 32 33614 35118638 36659327366 38261306901842 ...
...
Showing 1-4 of 4 results.
Comments