A068239
1/2 the number of colorings of a 3 X 3 square array with n colors.
Original entry on oeis.org
1, 123, 4806, 71410, 583455, 3232341, 13675228, 47502036, 141991245, 377162335, 910842306, 2033854758, 4253012491, 8411348505, 15856955640, 28673921896, 49991146713, 84387303171, 138412872190, 221253017370, 345558093111, 528471784093, 792890261076
Offset: 2
A182406
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square grid graph G_(k,k).
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 2, 18, 4, 0, 2, 246, 84, 5, 0, 2, 7812, 9612, 260, 6, 0, 2, 580986, 6000732, 142820, 630, 7, 0, 2, 101596896, 20442892764, 828850160, 1166910, 1302, 8, 0, 2, 41869995708, 380053267505964, 50820390410180, 38128724910, 6464682, 2408, 9
Offset: 1
Square array A(n,k) begins:
1, 0, 0, 0, 0, ...
2, 2, 2, 2, 2, ...
3, 18, 246, 7812, 580986, ...
4, 84, 9612, 6000732, 20442892764, ...
5, 260, 142820, 828850160, 50820390410180, ...
6, 630, 1166910, 38128724910, 21977869327169310, ...
Rows n=1-20 give:
A000007,
A007395,
A068253*3,
A068254*4,
A068255*5,
A068256*6,
A068257*7,
A068258*8,
A068259*9,
A068260*10,
A068261*11,
A068262*12,
A068263*13,
A068264*14,
A068265*15,
A068266*16,
A068267*17,
A068268*18,
A068269*19,
A068270*20.
A091940
Given n colors, sequence gives number of ways to color the vertices of a square such that no edge has the same color on both of its vertices.
Original entry on oeis.org
0, 2, 18, 84, 260, 630, 1302, 2408, 4104, 6570, 10010, 14652, 20748, 28574, 38430, 50640, 65552, 83538, 104994, 130340, 160020, 194502, 234278, 279864, 331800, 390650, 457002, 531468, 614684, 707310, 810030, 923552, 1048608, 1185954, 1336370, 1500660
Offset: 1
Ryan Witko (witko(AT)nyu.edu), Mar 11 2004
a(4) = 84 since there are 84 different ways to color the vertices of a square with 4 colors such that no two vertices that share an edge are the same color.
There are 4 possible colors for the first vertex and 3 for the second vertex. For the third vertex, divide into two cases: the third vertex can be the same color as the first vertex, and then the fourth vertex has 3 possible colors (4 * 3 * 1 * 3 = 36 colorings). Or the third vertex can be a different color from the first vertex, and then the fourth vertex has 2 possible colors (4 * 3 * 2 * 2 = 48 colorings). So there are a total of 36 + 48 = 84. - _Michael B. Porter_, Jul 24 2016
-
a := n -> (n-1)+(n-1)^4; for n to 35 do a(n) end do; # Rainer Rosenthal, Dec 03 2006
-
Table[2Binomial[n, 2] + 12Binomial[n, 3] + 24Binomial[n, 4], {n, 35}] (* Robert G. Wilson v, Mar 16 2004 *)
Table[(n-1)^4+(n-1),{n,1,60}] (* Vladimir Joseph Stephan Orlovsky, May 12 2011 *)
A212084
Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.
Original entry on oeis.org
1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0
3 example graphs: +-----------+
. o o o o o o |
. | |\ /| |\ /|\ /|\ /
. | | X | | X | X | X
. | |/ \| |/ \|/ \|/ \
. o o o o o o |
. +-----------+
Graph: K_(1,1) K_(2,2) K_(3,3)
Vertices: 2 4 6
Edges: 1 4 9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1;
1, -1, 0;
1, -4, 6, -3, 0;
1, -9, 36, -75, 78, -31, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, ...
1, -25, 300, -2200, 10650, -34730, 75170, -102545, ...
1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
...
Row sums and last elements of rows give:
A000007.
Sums of absolute values of row elements give:
A048163(n+1).
-
P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
seq(T(n), n=1..8);
A068253
1/3 of the number of colorings of an n X n square array with 3 colors.
Original entry on oeis.org
1, 6, 82, 2604, 193662, 33865632, 13956665236, 13574876544396, 31191658416342674, 169426507164530254380, 2176592549084872196370724, 66158464020552857153017287240, 4759146677426447759184119036493676, 810410082813497381147177065840601910384
Offset: 1
See
A047938 for number of improper colorings.
-
M[1] = {{1}}; M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]]; T[m_, 1] := 2^(m - 1); T[1, n_] := 2^(n - 1); T[m_, n_] := MatrixPower[W[m], n - 1] // Flatten // Total; a[n_] := T[n, n]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 01 2017, after code from A078099 *)
A068254
1/4 the number of colorings of an n X n square array with 4 colors.
Original entry on oeis.org
1, 21, 2403, 1500183, 5110723191, 95013316876491, 9639473169171326643, 5336900216006709884938623, 16124704040675904181778734982451, 265865038636937159336134567410478299051
Offset: 1
A068255
1/5 the number of colorings of an n X n square array with 5 colors.
Original entry on oeis.org
1, 52, 28564, 165770032, 10164078082036, 6584229526795818280, 45062665956031451017237456, 3258395057698765483724093981321824, 2489232886416012985921659124731697904597044, 20091032492258710696689787524926465967570325433558752
Offset: 1
A068256
1/6 the number of colorings of an n X n square array with 6 colors.
Original entry on oeis.org
1, 105, 194485, 6354787485, 3662978221194885, 37246546285522069805565, 6681224184095576349599961437005, 21141920893108925844961568245788270386085, 1180188030501408210062775052100916976604905321333565, 1162187850685436026547128866816039344195930156602955871508107885
Offset: 1
A068257
1/7 the number of colorings of an n X n square array with 7 colors.
Original entry on oeis.org
1, 186, 923526, 122408393436, 433110977725751106, 40908457493732914322944536, 103146129375410533061371714364918916, 6942544711174164051575906086886643368922134556, 12474132532762777585883439690925675118905860580968258566406
Offset: 1
A068258
1/8 the number of colorings of an n X n square array with 8 colors.
Original entry on oeis.org
1, 301, 3418807, 1465295106499, 23698346512668445387, 14462834689097706163375677127, 333066712033498255371201983520013525951, 289435280548175417311368841643540798029239265418611, 9491047284937011500293532002379383630495589849878668222747216079
Offset: 1
Showing 1-10 of 27 results.
Comments