cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A068239 1/2 the number of colorings of a 3 X 3 square array with n colors.

Original entry on oeis.org

1, 123, 4806, 71410, 583455, 3232341, 13675228, 47502036, 141991245, 377162335, 910842306, 2033854758, 4253012491, 8411348505, 15856955640, 28673921896, 49991146713, 84387303171, 138412872190, 221253017370, 345558093111, 528471784093, 792890261076
Offset: 2

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (79+(-323+(594+(-648+(459+(-216+(66+(-12+n)*n)*n) *n)*n)*n)*n)*n) *n/2:
    seq(a(n), n=2..30); # Alois P. Heinz, Apr 27 2012

Formula

From Alois P. Heinz, Apr 27 2012: (Start)
G.f.: x^2*(1199*x^7 +16567*x^6 +60099*x^5 +71075*x^4 +28765*x^3 +3621*x^2 +113*x+1) / (x-1)^10.
a(n) = (79*n -323*n^2 +594*n^3 -648*n^4 +459*n^5 -216*n^6 +66*n^7 -12*n^8 +n^9) / 2.
(End)

A182406 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square grid graph G_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 18, 4, 0, 2, 246, 84, 5, 0, 2, 7812, 9612, 260, 6, 0, 2, 580986, 6000732, 142820, 630, 7, 0, 2, 101596896, 20442892764, 828850160, 1166910, 1302, 8, 0, 2, 41869995708, 380053267505964, 50820390410180, 38128724910, 6464682, 2408, 9
Offset: 1

Views

Author

Alois P. Heinz, Apr 27 2012

Keywords

Comments

The square grid graph G_(n,n) has n^2 = A000290(n) vertices and 2*n*(n-1) = A046092(n-1) edges. The chromatic polynomial of G_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			Square array A(n,k) begins:
  1,   0,       0,           0,                 0, ...
  2,   2,       2,           2,                 2, ...
  3,  18,     246,        7812,            580986, ...
  4,  84,    9612,     6000732,       20442892764, ...
  5, 260,  142820,   828850160,    50820390410180, ...
  6, 630, 1166910, 38128724910, 21977869327169310, ...
		

Crossrefs

Columns k=1-7 give: A000027, A091940, A068239*2, A068240*2, A068241*2, A068242*2, A068243*2.
Rows n=1-20 give: A000007, A007395, A068253*3, A068254*4, A068255*5, A068256*6, A068257*7, A068258*8, A068259*9, A068260*10, A068261*11, A068262*12, A068263*13, A068264*14, A068265*15, A068266*16, A068267*17, A068268*18, A068269*19, A068270*20.
Cf. A182368.

A091940 Given n colors, sequence gives number of ways to color the vertices of a square such that no edge has the same color on both of its vertices.

Original entry on oeis.org

0, 2, 18, 84, 260, 630, 1302, 2408, 4104, 6570, 10010, 14652, 20748, 28574, 38430, 50640, 65552, 83538, 104994, 130340, 160020, 194502, 234278, 279864, 331800, 390650, 457002, 531468, 614684, 707310, 810030, 923552, 1048608, 1185954, 1336370, 1500660
Offset: 1

Views

Author

Ryan Witko (witko(AT)nyu.edu), Mar 11 2004

Keywords

Comments

Also equals the number of pairs of pairs ((a_1,a_2),(b_1,b_2)) that are disjoint (a_i != b_j) where all elements belong to {1,...,n}. See A212085. - Lewis Baxter, Mar 06 2023

Examples

			a(4) = 84 since there are 84 different ways to color the vertices of a square with 4 colors such that no two vertices that share an edge are the same color.
There are 4 possible colors for the first vertex and 3 for the second vertex. For the third vertex, divide into two cases: the third vertex can be the same color as the first vertex, and then the fourth vertex has 3 possible colors (4 * 3 * 1 * 3 = 36 colorings). Or the third vertex can be a different color from the first vertex, and then the fourth vertex has 2 possible colors (4 * 3 * 2 * 2 = 48 colorings). So there are a total of 36 + 48 = 84. - _Michael B. Porter_, Jul 24 2016
		

Crossrefs

Column k=2 of A212085.

Programs

Formula

a(n) = 2*C(n,2) + 12*C(n,3) + 24*C(n,4) = n*(n-1)*(n^2-3*n+3).
a(n) = (n-1) + (n-1)^4. - Rainer Rosenthal, Dec 03 2006
G.f.: 2*x^2*(1+4*x+7*x^2)/(1-x)^5. a(n) = 2*A027441(n-1). - R. J. Mathar, Sep 09 2008
For n > 1, a(n) = floor(n^7/(n^3-1)). - Gary Detlefs, Feb 10 2010
a(n) = 2 * A000217(n-1) * A002061(n-1), n >= 1. - Daniel Forgues, Jul 14 2016
E.g.f.: exp(x)*x^2*(1 + x)^2. - Stefano Spezia, Oct 08 2022

Extensions

More terms from Robert G. Wilson v, Mar 16 2004

A212084 Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.

Original entry on oeis.org

1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2012

Keywords

Comments

The complete bipartite graph K_(n,n) has 2n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2n+1 = A005408(n) coefficients.

Examples

			3 example graphs:                     +-----------+
.                 o        o   o      o   o   o   |
.                 |        |\ /|      |\ /|\ /|\ /
.                 |        | X |      | X | X | X
.                 |        |/ \|      |/ \|/ \|/ \
.                 o        o   o      o   o   o   |
.                                     +-----------+
Graph:         K_(1,1)    K_(2,2)      K_(3,3)
Vertices:         2          4            6
Edges:            1          4            9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1;
  1,  -1,   0;
  1,  -4,   6,    -3,     0;
  1,  -9,  36,   -75,    78,     -31,       0;
  1, -16, 120,  -524,  1400,   -2236,    1930,     -675, ...
  1, -25, 300, -2200, 10650,  -34730,   75170,  -102545, ...
  1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
  ...
		

Crossrefs

Columns k=0-2 give: A000012, (-1)*A000290, A083374.
Row sums and last elements of rows give: A000007.
Row lengths give: A005408.
Sums of absolute values of row elements give: A048163(n+1).
T(n,2n-1) = (-1)*A092552(n).

Programs

  • Maple
    P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
    T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
    seq(T(n), n=1..8);

Formula

T(n,k) = [q^(2n-k)] Sum_{j=0..n} (q-j)^n * S2(n,j) * Product_{i=0..j-1} (q-i).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 03 2024

A068253 1/3 of the number of colorings of an n X n square array with 3 colors.

Original entry on oeis.org

1, 6, 82, 2604, 193662, 33865632, 13956665236, 13574876544396, 31191658416342674, 169426507164530254380, 2176592549084872196370724, 66158464020552857153017287240, 4759146677426447759184119036493676, 810410082813497381147177065840601910384
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

See A047938 for number of improper colorings.
Main diagonal of A078099.
Twice A207993 for n>1.

Programs

  • Mathematica
    M[1] = {{1}}; M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]]; T[m_, 1] := 2^(m - 1); T[1, n_] := 2^(n - 1); T[m_, n_] := MatrixPower[W[m], n - 1] // Flatten // Total; a[n_] := T[n, n]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 01 2017, after code from A078099 *)

Formula

For formula see A078099.

Extensions

More terms from Vladeta Jovovic, Jul 22 2004
a(11)-a(12) from Alois P. Heinz, Mar 25 2009
a(13)-a(14) from Andrew Howroyd, Jun 26 2017

A068254 1/4 the number of colorings of an n X n square array with 4 colors.

Original entry on oeis.org

1, 21, 2403, 1500183, 5110723191, 95013316876491, 9639473169171326643, 5336900216006709884938623, 16124704040675904181778734982451, 265865038636937159336134567410478299051
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(9)-a(10) from Alois P. Heinz, Apr 27 2012

A068255 1/5 the number of colorings of an n X n square array with 5 colors.

Original entry on oeis.org

1, 52, 28564, 165770032, 10164078082036, 6584229526795818280, 45062665956031451017237456, 3258395057698765483724093981321824, 2489232886416012985921659124731697904597044, 20091032492258710696689787524926465967570325433558752
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(8)-a(10) from Alois P. Heinz, Apr 27 2012

A068256 1/6 the number of colorings of an n X n square array with 6 colors.

Original entry on oeis.org

1, 105, 194485, 6354787485, 3662978221194885, 37246546285522069805565, 6681224184095576349599961437005, 21141920893108925844961568245788270386085, 1180188030501408210062775052100916976604905321333565, 1162187850685436026547128866816039344195930156602955871508107885
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(8)-a(10) from Alois P. Heinz, Apr 27 2012

A068257 1/7 the number of colorings of an n X n square array with 7 colors.

Original entry on oeis.org

1, 186, 923526, 122408393436, 433110977725751106, 40908457493732914322944536, 103146129375410533061371714364918916, 6942544711174164051575906086886643368922134556, 12474132532762777585883439690925675118905860580968258566406
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(7)-a(9) from Alois P. Heinz, Apr 27 2012

A068258 1/8 the number of colorings of an n X n square array with 8 colors.

Original entry on oeis.org

1, 301, 3418807, 1465295106499, 23698346512668445387, 14462834689097706163375677127, 333066712033498255371201983520013525951, 289435280548175417311368841643540798029239265418611, 9491047284937011500293532002379383630495589849878668222747216079
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(6)-a(9) from Alois P. Heinz, Apr 27 2012
Showing 1-10 of 27 results. Next