A182406
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square grid graph G_(k,k).
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 2, 18, 4, 0, 2, 246, 84, 5, 0, 2, 7812, 9612, 260, 6, 0, 2, 580986, 6000732, 142820, 630, 7, 0, 2, 101596896, 20442892764, 828850160, 1166910, 1302, 8, 0, 2, 41869995708, 380053267505964, 50820390410180, 38128724910, 6464682, 2408, 9
Offset: 1
Square array A(n,k) begins:
1, 0, 0, 0, 0, ...
2, 2, 2, 2, 2, ...
3, 18, 246, 7812, 580986, ...
4, 84, 9612, 6000732, 20442892764, ...
5, 260, 142820, 828850160, 50820390410180, ...
6, 630, 1166910, 38128724910, 21977869327169310, ...
Rows n=1-20 give:
A000007,
A007395,
A068253*3,
A068254*4,
A068255*5,
A068256*6,
A068257*7,
A068258*8,
A068259*9,
A068260*10,
A068261*11,
A068262*12,
A068263*13,
A068264*14,
A068265*15,
A068266*16,
A068267*17,
A068268*18,
A068269*19,
A068270*20.
A222281
T(n,k) = number of n X k 0..5 arrays with no entry increasing mod 6 by 5 rightwards or downwards, starting with upper left zero.
Original entry on oeis.org
1, 5, 5, 25, 105, 25, 125, 2205, 2205, 125, 625, 46305, 194485, 46305, 625, 3125, 972405, 17153945, 17153945, 972405, 3125, 15625, 20420505, 1513010465, 6354787485, 1513010465, 20420505, 15625, 78125, 428830605, 133450391205
Offset: 1
Table starts
........1................5......................25..........................125
........5..............105....................2205........................46305
.......25.............2205..................194485.....................17153945
......125............46305................17153945...................6354787485
......625...........972405..............1513010465................2354171487645
.....3125.........20420505............133450391205..............872117822449905
....15625........428830605..........11770577485085...........323081602357856985
....78125.......9005442705........1038187247574145........119687637492011211885
...390625.....189114296805.......91570083319317865......44339047670574481807485
..1953125....3971400232905.....8076654937439905005...16425682631297501047982145
..9765625...83399404891005...712376276332499775685.6084998755694142903356375385
.48828125.1751387502711105.62832938018547611186345
...
Some solutions for n=3, k=4:
..0..0..0..0....0..0..0..0....0..0..0..0....0..3..0..0....0..0..0..0
..4..2..0..1....1..2..0..4....0..0..0..1....0..0..3..1....0..2..3..0
..0..4..1..4....1..4..1..2....3..4..4..1....3..0..4..4....4..5..1..3
Showing 1-2 of 2 results.
Comments