cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A182406 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square grid graph G_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 18, 4, 0, 2, 246, 84, 5, 0, 2, 7812, 9612, 260, 6, 0, 2, 580986, 6000732, 142820, 630, 7, 0, 2, 101596896, 20442892764, 828850160, 1166910, 1302, 8, 0, 2, 41869995708, 380053267505964, 50820390410180, 38128724910, 6464682, 2408, 9
Offset: 1

Views

Author

Alois P. Heinz, Apr 27 2012

Keywords

Comments

The square grid graph G_(n,n) has n^2 = A000290(n) vertices and 2*n*(n-1) = A046092(n-1) edges. The chromatic polynomial of G_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			Square array A(n,k) begins:
  1,   0,       0,           0,                 0, ...
  2,   2,       2,           2,                 2, ...
  3,  18,     246,        7812,            580986, ...
  4,  84,    9612,     6000732,       20442892764, ...
  5, 260,  142820,   828850160,    50820390410180, ...
  6, 630, 1166910, 38128724910, 21977869327169310, ...
		

Crossrefs

Columns k=1-7 give: A000027, A091940, A068239*2, A068240*2, A068241*2, A068242*2, A068243*2.
Rows n=1-20 give: A000007, A007395, A068253*3, A068254*4, A068255*5, A068256*6, A068257*7, A068258*8, A068259*9, A068260*10, A068261*11, A068262*12, A068263*13, A068264*14, A068265*15, A068266*16, A068267*17, A068268*18, A068269*19, A068270*20.
Cf. A182368.

A222144 T(n,k) = number of n X k 0..4 arrays with no entry increasing mod 5 by 4 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 4, 4, 16, 52, 16, 64, 676, 676, 64, 256, 8788, 28564, 8788, 256, 1024, 114244, 1206964, 1206964, 114244, 1024, 4096, 1485172, 50999956, 165770032, 50999956, 1485172, 4096, 16384, 19307236, 2154990196, 22767656980, 22767656980
Offset: 1

Views

Author

R. H. Hardin, Feb 09 2013

Keywords

Comments

1/5 the number of 5-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.......1.............4...................16.........................64
.......4............52..................676.......................8788
......16...........676................28564....................1206964
......64..........8788..............1206964..................165770032
.....256........114244.............50999956................22767656980
....1024.......1485172...........2154990196..............3127020364012
....4096......19307236..........91058563924............429480137694664
...16384.....250994068........3847656513844..........58986884432558548
...65536....3262922884......162581749707796........8101544704688334244
..262144...42417997492.....6869850581244916.....1112705429924911477552
.1048576..551433967396...290283793189916884...152824358676750267429220
.4194304.7168641576148.12265868026121849524.20989638386627725143014812
...
Some solutions for n=3, k=4:
..0..0..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..1
..1..1..2..2....1..1..1..2....0..1..3..3....0..2..2..0....0..1..2..3
..3..4..0..0....1..3..1..3....2..2..0..1....0..2..2..2....1..4..2..3
		

Crossrefs

Columns 1-7 are A000302(n-1), A222138, A222139, A222140, A222141, A222142, A222143.
Main diagonal is A068255.
Cf. A078099 (3 colorings), A222444 (4 colorings), A198906 (unlabeled 5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n,k) = 4 * (6*A198906(n,k) - 3*A207997(n,k) - 2) for n*k > 1. - Andrew Howroyd, Jun 27 2017
Showing 1-2 of 2 results.