A182406
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square grid graph G_(k,k).
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 2, 18, 4, 0, 2, 246, 84, 5, 0, 2, 7812, 9612, 260, 6, 0, 2, 580986, 6000732, 142820, 630, 7, 0, 2, 101596896, 20442892764, 828850160, 1166910, 1302, 8, 0, 2, 41869995708, 380053267505964, 50820390410180, 38128724910, 6464682, 2408, 9
Offset: 1
Square array A(n,k) begins:
1, 0, 0, 0, 0, ...
2, 2, 2, 2, 2, ...
3, 18, 246, 7812, 580986, ...
4, 84, 9612, 6000732, 20442892764, ...
5, 260, 142820, 828850160, 50820390410180, ...
6, 630, 1166910, 38128724910, 21977869327169310, ...
Rows n=1-20 give:
A000007,
A007395,
A068253*3,
A068254*4,
A068255*5,
A068256*6,
A068257*7,
A068258*8,
A068259*9,
A068260*10,
A068261*11,
A068262*12,
A068263*13,
A068264*14,
A068265*15,
A068266*16,
A068267*17,
A068268*18,
A068269*19,
A068270*20.
A222444
T(n,k) = number of n X k 0..3 arrays with entries increasing mod 4 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.
Original entry on oeis.org
1, 3, 3, 9, 21, 9, 27, 147, 147, 27, 81, 1029, 2403, 1029, 81, 243, 7203, 39285, 39285, 7203, 243, 729, 50421, 642249, 1500183, 642249, 50421, 729, 2187, 352947, 10499787, 57289767, 57289767, 10499787, 352947, 2187, 6561, 2470629, 171655443
Offset: 1
Table starts
......1..........3...............9..................27.......................81
......3.........21.............147................1029.....................7203
......9........147............2403...............39285...................642249
.....27.......1029...........39285.............1500183.................57289767
.....81.......7203..........642249............57289767...............5110723191
....243......50421........10499787..........2187822609.............455924913093
....729.....352947.......171655443.........83550197745...........40672916404629
...2187....2470629......2806303725.......3190677470643.........3628419487925547
...6561...17294403.....45878770089.....121847980727187.......323690312271131451
..19683..121060821....750047661027....4653221950068669.....28876324830999722133
..59049..847425747..12262131106083..177700725073710285...2576049100980154511889
.177147.5931980229.200467073061765.6786168386579878383.229808641254065144560647
...
Some solutions for n=3, k=4:
..0..0..0..2....0..0..2..0....0..2..0..0....0..2..0..2....0..0..2..3
..1..2..2..3....0..2..3..1....2..2..2..0....0..0..0..2....0..2..3..1
..2..2..3..1....2..0..1..3....2..2..0..0....2..0..1..3....1..2..0..1
Showing 1-2 of 2 results.
Comments