cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A198715 T(n,k)=Number of nXk 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 25, 25, 5, 14, 172, 401, 172, 14, 41, 1201, 6548, 6548, 1201, 41, 122, 8404, 107042, 250031, 107042, 8404, 122, 365, 58825, 1749965, 9548295, 9548295, 1749965, 58825, 365, 1094, 411772, 28609241, 364637102, 851787199, 364637102
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2011

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
....1........1............2...............5..................14
....1........4...........25.............172................1201
....2.......25..........401............6548..............107042
....5......172.........6548..........250031.............9548295
...14.....1201.......107042.........9548295...........851787199
...41.....8404......1749965.......364637102.........75987485516
..122....58825.....28609241.....13925032958.......6778819400772
..365...411772....467717288....531779578441.....604736581320925
.1094..2882401...7646461682..20307996787865...53948385378521909
.3281.20176804.125007943505.775536991678112.4812720805166620356
...
Some solutions with all values from 0 to 3 for n=6 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..2..1....0..1..0..1....0..1..0..1....0..1..0..2....0..1..0..1
..1..2..0..3....2..0..3..0....2..0..1..0....1..2..1..3....1..2..3..0
..2..0..2..0....1..3..0..2....3..2..0..2....0..3..0..2....3..1..2..3
..3..2..0..1....3..2..1..0....0..3..2..1....3..1..3..0....1..3..1..0
		

Crossrefs

Columns 1-7 are A007051(n-2), A034494(n-1), A198710, A198711, A198712, A198713, A198714.
Main diagonal is A198709.
Cf. A207997 (3 colorings), A222444 (labeled 4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

A222144 T(n,k) = number of n X k 0..4 arrays with no entry increasing mod 5 by 4 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 4, 4, 16, 52, 16, 64, 676, 676, 64, 256, 8788, 28564, 8788, 256, 1024, 114244, 1206964, 1206964, 114244, 1024, 4096, 1485172, 50999956, 165770032, 50999956, 1485172, 4096, 16384, 19307236, 2154990196, 22767656980, 22767656980
Offset: 1

Views

Author

R. H. Hardin, Feb 09 2013

Keywords

Comments

1/5 the number of 5-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.......1.............4...................16.........................64
.......4............52..................676.......................8788
......16...........676................28564....................1206964
......64..........8788..............1206964..................165770032
.....256........114244.............50999956................22767656980
....1024.......1485172...........2154990196..............3127020364012
....4096......19307236..........91058563924............429480137694664
...16384.....250994068........3847656513844..........58986884432558548
...65536....3262922884......162581749707796........8101544704688334244
..262144...42417997492.....6869850581244916.....1112705429924911477552
.1048576..551433967396...290283793189916884...152824358676750267429220
.4194304.7168641576148.12265868026121849524.20989638386627725143014812
...
Some solutions for n=3, k=4:
..0..0..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..1
..1..1..2..2....1..1..1..2....0..1..3..3....0..2..2..0....0..1..2..3
..3..4..0..0....1..3..1..3....2..2..0..1....0..2..2..2....1..4..2..3
		

Crossrefs

Columns 1-7 are A000302(n-1), A222138, A222139, A222140, A222141, A222142, A222143.
Main diagonal is A068255.
Cf. A078099 (3 colorings), A222444 (4 colorings), A198906 (unlabeled 5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n,k) = 4 * (6*A198906(n,k) - 3*A207997(n,k) - 2) for n*k > 1. - Andrew Howroyd, Jun 27 2017

A222281 T(n,k) = number of n X k 0..5 arrays with no entry increasing mod 6 by 5 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 5, 5, 25, 105, 25, 125, 2205, 2205, 125, 625, 46305, 194485, 46305, 625, 3125, 972405, 17153945, 17153945, 972405, 3125, 15625, 20420505, 1513010465, 6354787485, 1513010465, 20420505, 15625, 78125, 428830605, 133450391205
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2013

Keywords

Comments

1/6 the number of 6-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
........1................5......................25..........................125
........5..............105....................2205........................46305
.......25.............2205..................194485.....................17153945
......125............46305................17153945...................6354787485
......625...........972405..............1513010465................2354171487645
.....3125.........20420505............133450391205..............872117822449905
....15625........428830605..........11770577485085...........323081602357856985
....78125.......9005442705........1038187247574145........119687637492011211885
...390625.....189114296805.......91570083319317865......44339047670574481807485
..1953125....3971400232905.....8076654937439905005...16425682631297501047982145
..9765625...83399404891005...712376276332499775685.6084998755694142903356375385
.48828125.1751387502711105.62832938018547611186345
...
Some solutions for n=3, k=4:
..0..0..0..0....0..0..0..0....0..0..0..0....0..3..0..0....0..0..0..0
..4..2..0..1....1..2..0..4....0..0..0..1....0..0..3..1....0..2..3..0
..0..4..1..4....1..4..1..2....3..4..4..1....3..0..4..4....4..5..1..3
		

Crossrefs

Columns 1-7 are A000351(n-1), 5*A009965(n-1), A222276, A222277, A222278, A222279, A222280.
Main diagonal is A068256.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A198982 (unlabeled 6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n, k) = 5 * (24*A198982(n,k) - 12*A198715(n,k) - 8*A207997(n,k) - 3) for n*k > 1. - Andrew Howroyd, Jun 27 2017

A222340 T(n,k) = number of n X k 0..6 arrays with no entry increasing mod 7 by 6 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 6, 6, 36, 186, 36, 216, 5766, 5766, 216, 1296, 178746, 923526, 178746, 1296, 7776, 5541126, 147918906, 147918906, 5541126, 7776, 46656, 171774906, 23691810366, 122408393436, 23691810366, 171774906, 46656, 279936, 5325022086
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2013

Keywords

Comments

1/7 the number of 7-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.......1.............6...................36........................216
.......6...........186.................5766.....................178746
......36..........5766...............923526..................147918906
.....216........178746............147918906...............122408393436
....1296.......5541126..........23691810366............101297497221786
....7776.....171774906........3794659477146..........83827445649884946
...46656....5325022086......607781352505806.......69370328359709445996
..279936..165075684666....97346856728146986....57406526220963704077986
.1679616.5117346224646.15591808593304758846.47506035082750189614687546
...
Some solutions for n=3, k=4:
..0..0..2..0....0..2..2..0....0..0..0..0....0..2..0..0....0..2..0..0
..0..5..3..0....0..2..5..0....0..1..5..0....0..5..0..0....0..0..5..0
..3..1..4..5....4..4..2..3....3..6..1..4....2..2..2..2....4..1..3..4
		

Crossrefs

Columns 1-6 are A000400(n-1), A222335, A222336, A222337, A222338, A222339.
Main diagonal is A068257.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A198723 (unlabeled 7 colorings), A222462 (8 colorings).

Formula

T(n, k) = 6 * (120*A198723(n,k) - 60*A198906(n,k) - 40*A198715(n,k) - 15*A207997(n,k) - 4) for n*k > 1. - Andrew Howroyd, Jun 27 2017

A078099 Array T(m,n) read by antidiagonals: T(m,n) = number of ways of 3-coloring an m X n grid (m >= 1, n >= 1).

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 8, 18, 18, 8, 16, 54, 82, 54, 16, 32, 162, 374, 374, 162, 32, 64, 486, 1706, 2604, 1706, 486, 64, 128, 1458, 7782, 18150, 18150, 7782, 1458, 128, 256, 4374, 35498, 126534, 193662, 126534, 35498, 4374, 256, 512, 13122, 161926, 882180, 2068146, 2068146, 882180, 161926, 13122, 512
Offset: 1

Views

Author

N. J. A. Sloane, Dec 05 2002

Keywords

Comments

We assume the top left point gets color 1 (or, in other words, take the total number of colorings and divide by 3). The rule for coloring is that horizontally or vertically adjacent points must have different colors. - N. J. A. Sloane, Feb 12 2013
Equals half the number of m X n binary matrices with no 2 X 2 circuit having the pattern 0011 in any orientation. - R. H. Hardin, Oct 06 2010
Also the number of Miura-ori foldings [Ginepro-Hull]. - N. J. A. Sloane, Aug 05 2015

Examples

			Array begins:
1       2       4       8       16      32      64      128     256     512 ...
2       6       18      54      162     486     1458    4374    13122 ...
4       18      82      374     1706    7782    35498   161926 ...
8       54      374     2604    18150   126534  882180 ...
16      162     1706    18150   193662 ...
32      486     7782    126534 ...
For the 1 X n case: the first point gets color 1, thereafter there are 2 choices for each color, so T(1,n) = 2^(n-1).
For the 2 X 2 case, the colorings are
12 12 12 13 13 13
21 23 31 31 32 21
		

References

  • Thomas C. Hull, Coloring Connections with Counting Mountain-Valley Assignments in (book) Origami^6: I. Mathematics, 2015, ed. Koryo Miura, Toshikazu Kawasaki, Tomohiro Tachi, Ryuhei Uehara, Robert J. Lang, Patsy Wang-Iverson, American Mathematical Soc., Dec 18, 2015, 368 pages
  • Michael S. Paterson (Warwick), personal communication.

Crossrefs

Cf. A207997, A020698, A078100. Main diagonal is A068253. Other diagonals produce A078101 and A078102.
Cf. A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Programs

  • Maple
    with(linalg); t := transpose; M[1] := matrix(1,1,[1]); Z[1] := matrix(1,1,0); W[1] := evalm(M[1]+t(M[1])); v[1] := matrix(1,1,1);
    for n from 2 to 6 do t1 := stackmatrix(M[n-1],Z[n-1]); t2 := stackmatrix(t(M[n-1]),M[n-1]); M[n] := t(stackmatrix(t(t1),t(t2))); Z[n] := matrix(2^(n-1),2^(n-1),0); W[n] := evalm(M[n]+t(M[n])); v[n] := matrix(1,2^(n-1),1); od:
    T := proc(m,n) evalm( v[m] &* W[m]^(n-1) &* t(v[m]) ); end;
  • Mathematica
    mmax = 10; M[1] = {{1}}; M[m_] := M[m] = {{M[m-1], Transpose[M[m-1]]}, {Array[0&, {2^(m-2), 2^(m-2)}], M[m-1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]]; T[m_, 1] := 2^(m-1); T[1, n_] := 2^(n-1); T[m_, n_] := MatrixPower[W[m], n-1] // Flatten // Total; Table[T[m-n+1, n], {m, 1, mmax}, {n, 1, m}] // Flatten (* Jean-François Alcover, Feb 13 2016 *)

Formula

Let M[1] = [1], M[m+1] = the block matrix [ [ M[m], M[m]' ], [ 0, M[m] ] ], W[m] = M[m] + M[m]', then T(m, n) = sum of entries of W[m]^(n-1) (the prime denotes transpose).
T(3,n) = A052913(n). T(4,n) = 2*A078100(n).
T(n,m) = T(m,n). T(1,n)= A000079(n-1). T(2,n)=A025192(n). T(5,n) = 2*A207994(n). T(6,n) = 2*A207995(n). - R. J. Mathar, Nov 23 2015

Extensions

More terms from Alois P. Heinz, Mar 23 2009

A222462 T(n,k) = number of n X k 0..7 arrays with no entry increasing mod 8 by 7 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 7, 7, 49, 301, 49, 343, 12943, 12943, 343, 2401, 556549, 3418807, 556549, 2401, 16807, 23931607, 903055069, 903055069, 23931607, 16807, 117649, 1029059101, 238535974201, 1465295106499, 238535974201, 1029059101, 117649, 823543
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2013

Keywords

Comments

1/8 the number of 8-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
......1.............7..................49........................343
......7...........301...............12943.....................556549
.....49.........12943.............3418807..................903055069
....343........556549...........903055069..............1465295106499
...2401......23931607........238535974201...........2377584520856755
..16807....1029059101......63007686842527........3857863258420747009
.117649...44249541343...16643060295393343.....6259760185235726701945
.823543.1902730277749.4396153388210813341.10157072698503130798653535
...
Some solutions for n=3, k=4:
..0..4..2..3....0..0..0..4....0..4..6..1....0..4..0..4....0..2..6..2
..0..0..5..6....0..0..4..6....0..0..1..5....0..0..6..0....0..0..2..3
..0..0..0..1....0..0..5..1....0..0..3..5....0..0..0..1....0..0..3..5
		

Crossrefs

Columns 1-5 are A000420(n-1), 7*43^(n-1), A222459, A222460, A222461.
Main diagonal is A068258.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A198914 (unlabeled 8 colorings).

Formula

T(n, k) = 7 * (720*A198914(n,k) - 360*A198982(n,k) - 240*A198906(n,k) - 90*A198715(n,k) - 24*A207997(n,k) - 5) for n*k > 1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 7*a(n-1).
k=2: a(n) = 43*a(n-1).
k=3: a(n) = 270*a(n-1) - 1547*a(n-2).
k=4: a(n) = 1689*a(n-1) - 108775*a(n-2) + 1672631*a(n-3).
k=5: a(n) = 10754*a(n-1) - 8060499*a(n-2) + 2219242223*a(n-3) - 245682627864*a(n-4) + 5798947687589*a(n-5) + 448113231493438*a(n-6) - 2763020698450992*a(n-7).

A223331 T(n,k)=Rolling cube footprints: number of nXk 0..7 arrays starting with 0 where 0..7 label vertices of a cube and every array movement to a horizontal or antidiagonal neighbor moves along a corresponding cube edge.

Original entry on oeis.org

1, 3, 8, 9, 27, 64, 27, 189, 243, 512, 81, 1323, 3969, 2187, 4096, 243, 9261, 64827, 83349, 19683, 32768, 729, 64827, 1059723, 3176523, 1750329, 177147, 262144, 2187, 453789, 17324685, 121264857, 155649627, 36756909, 1594323, 2097152, 6561
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
.........1..........3.............9................27....................81
.........8.........27...........189..............1323..................9261
........64........243..........3969.............64827...............1059723
.......512.......2187.........83349...........3176523.............121264857
......4096......19683.......1750329.........155649627...........13876429707
.....32768.....177147......36756909........7626831723.........1587890407761
....262144....1594323.....771895089......373714754427.......181703507374179
...2097152...14348907...16209796869....18312022966923.....20792470582897209
..16777216..129140163..340405734249...897289125379227...2379298227030964827
.134217728.1162261467.7148520419229.43967167143582123.272264906211251105313
Horizontal or vertical instead of horizontal or antidiagonal gives A222444

Examples

			Some solutions for n=3 k=4
..0..4..5..1....0..4..0..1....0..4..6..4....0..2..0..4....0..4..6..4
..5..4..0..1....5..1..5..1....0..2..0..2....6..2..6..4....6..2..6..7
..6..2..3..1....5..7..3..2....3..2..3..1....6..4..0..4....0..2..6..7
Vertex neighbors:
0 -> 1 2 4
1 -> 0 3 5
2 -> 0 3 6
3 -> 1 2 7
4 -> 0 5 6
5 -> 1 4 7
6 -> 2 4 7
7 -> 3 5 6
		

Crossrefs

Column 1 is A001018(n-1)
Column 2 is A013708(n-1)
Column 3 is 9*21^(n-1)
Column 4 is 27*49^(n-1)
Row 1 is A000244(n-1)
Row 2 is 27*7^(n-2) for n>1

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 21*a(n-1)
k=4: a(n) = 49*a(n-1)
k=5: a(n) = 117*a(n-1) -294*a(n-2)
k=6: a(n) = 282*a(n-1) -3969*a(n-2) +9604*a(n-3)
k=7: a(n) = 692*a(n-1) -43569*a(n-2) +847042*a(n-3) -6303164*a(n-4) +15731352*a(n-5)
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 7*a(n-1) for n>2
n=3: a(n) = 18*a(n-1) -27*a(n-2) for n>4
n=4: a(n) = 48*a(n-1) -402*a(n-2) +1064*a(n-3) -789*a(n-4) for n>7
n=5: [order 9] for n>13
n=6: [order 20] for n>25
n=7: [order 51] for n>57

A068254 1/4 the number of colorings of an n X n square array with 4 colors.

Original entry on oeis.org

1, 21, 2403, 1500183, 5110723191, 95013316876491, 9639473169171326643, 5336900216006709884938623, 16124704040675904181778734982451, 265865038636937159336134567410478299051
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(9)-a(10) from Alois P. Heinz, Apr 27 2012

A222439 Number of n X 3 0..3 arrays with entries increasing mod 4 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

9, 147, 2403, 39285, 642249, 10499787, 171655443, 2806303725, 45878770089, 750047661027, 12262131106083, 200467073061765, 3277329775247529, 53579324981787867, 875939945740498323, 14320277248820697405
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2013

Keywords

Comments

Column 3 of A222444.

Examples

			Some solutions for n=3:
..0..2..3....0..1..2....0..2..2....0..2..3....0..0..0....0..2..2....0..0..1
..2..0..0....2..2..0....1..2..2....2..0..0....0..2..2....0..0..2....2..0..2
..2..0..1....2..0..1....3..3..3....2..0..2....0..2..3....1..2..2....3..1..2
		

Crossrefs

Cf. A222444.

Formula

Empirical: a(n) = 18*a(n-1) - 27*a(n-2).
Empirical g.f.: 3*x*(3 - 5*x) / (1 - 18*x + 27*x^2). - Colin Barker, Mar 15 2018

A222440 Number of n X 4 0..3 arrays with entries increasing mod 4 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

27, 1029, 39285, 1500183, 57289767, 2187822609, 83550197745, 3190677470643, 121847980727187, 4653221950068669, 177700725073710285, 6786168386579878383, 259155281174281941087, 9896815984320245625609, 377947021506548282896905
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2013

Keywords

Comments

Column 4 of A222444.

Examples

			Some solutions for n=3:
..0..2..2..0....0..2..3..0....0..2..2..3....0..0..2..2....0..2..3..1
..1..2..0..1....1..2..0..1....1..3..0..0....2..0..0..2....2..0..0..1
..2..3..1..2....2..2..2..2....2..0..1..2....2..2..2..3....3..0..0..2
		

Crossrefs

Cf. A222444.

Formula

Empirical: a(n) = 45*a(n-1) - 267*a(n-2) + 263*a(n-3).
Empirical g.f.: 3*x*(9 - 62*x + 63*x^2) / (1 - 45*x + 267*x^2 - 263*x^3). - Colin Barker, Mar 15 2018
Showing 1-10 of 13 results. Next