cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207997 T(n,k) = number of n X k 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 9, 9, 4, 8, 27, 41, 27, 8, 16, 81, 187, 187, 81, 16, 32, 243, 853, 1302, 853, 243, 32, 64, 729, 3891, 9075, 9075, 3891, 729, 64, 128, 2187, 17749, 63267, 96831, 63267, 17749, 2187, 128, 256, 6561, 80963, 441090, 1034073, 1034073, 441090, 80963
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 3 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
..1....1.....2.......4.........8.........16...........32............64
..1....3.....9......27........81........243..........729..........2187
..2....9....41.....187.......853.......3891........17749.........80963
..4...27...187....1302......9075......63267.......441090.......3075255
..8...81...853....9075.....96831....1034073.....11045757.....117997043
.16..243..3891...63267...1034073...16932816....277458045....4547477370
.32..729.17749..441090..11045757..277458045...6978332618..175605187731
.64.2187.80963.3075255.117997043.4547477370.175605187731.6787438272198
...
Some solutions for n=4, k=3:
..0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0
..2..0..1....2..0..2....1..0..2....1..2..1....2..0..1....1..2..1....1..2..1
..0..2..0....0..1..0....2..1..0....0..1..2....0..2..0....0..1..2....2..0..2
..1..0..1....1..2..1....1..0..1....1..2..0....2..0..2....2..0..1....1..2..0
		

Crossrefs

Cf. A020698 (column 3), A078100 (column 4), A207994 (column 5), A207995 (column 6), A207996 (column 7).
Main diagonal is A207993.
Cf. A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

Formula

2*T(n,m) = A078099(n,m) for m>1. - R. J. Mathar, Nov 23 2015

A222144 T(n,k) = number of n X k 0..4 arrays with no entry increasing mod 5 by 4 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 4, 4, 16, 52, 16, 64, 676, 676, 64, 256, 8788, 28564, 8788, 256, 1024, 114244, 1206964, 1206964, 114244, 1024, 4096, 1485172, 50999956, 165770032, 50999956, 1485172, 4096, 16384, 19307236, 2154990196, 22767656980, 22767656980
Offset: 1

Views

Author

R. H. Hardin, Feb 09 2013

Keywords

Comments

1/5 the number of 5-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.......1.............4...................16.........................64
.......4............52..................676.......................8788
......16...........676................28564....................1206964
......64..........8788..............1206964..................165770032
.....256........114244.............50999956................22767656980
....1024.......1485172...........2154990196..............3127020364012
....4096......19307236..........91058563924............429480137694664
...16384.....250994068........3847656513844..........58986884432558548
...65536....3262922884......162581749707796........8101544704688334244
..262144...42417997492.....6869850581244916.....1112705429924911477552
.1048576..551433967396...290283793189916884...152824358676750267429220
.4194304.7168641576148.12265868026121849524.20989638386627725143014812
...
Some solutions for n=3, k=4:
..0..0..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..1
..1..1..2..2....1..1..1..2....0..1..3..3....0..2..2..0....0..1..2..3
..3..4..0..0....1..3..1..3....2..2..0..1....0..2..2..2....1..4..2..3
		

Crossrefs

Columns 1-7 are A000302(n-1), A222138, A222139, A222140, A222141, A222142, A222143.
Main diagonal is A068255.
Cf. A078099 (3 colorings), A222444 (4 colorings), A198906 (unlabeled 5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n,k) = 4 * (6*A198906(n,k) - 3*A207997(n,k) - 2) for n*k > 1. - Andrew Howroyd, Jun 27 2017

A222444 T(n,k) = number of n X k 0..3 arrays with entries increasing mod 4 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

1, 3, 3, 9, 21, 9, 27, 147, 147, 27, 81, 1029, 2403, 1029, 81, 243, 7203, 39285, 39285, 7203, 243, 729, 50421, 642249, 1500183, 642249, 50421, 729, 2187, 352947, 10499787, 57289767, 57289767, 10499787, 352947, 2187, 6561, 2470629, 171655443
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2013

Keywords

Comments

1/4 the number of 4-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
......1..........3...............9..................27.......................81
......3.........21.............147................1029.....................7203
......9........147............2403...............39285...................642249
.....27.......1029...........39285.............1500183.................57289767
.....81.......7203..........642249............57289767...............5110723191
....243......50421........10499787..........2187822609.............455924913093
....729.....352947.......171655443.........83550197745...........40672916404629
...2187....2470629......2806303725.......3190677470643.........3628419487925547
...6561...17294403.....45878770089.....121847980727187.......323690312271131451
..19683..121060821....750047661027....4653221950068669.....28876324830999722133
..59049..847425747..12262131106083..177700725073710285...2576049100980154511889
.177147.5931980229.200467073061765.6786168386579878383.229808641254065144560647
...
Some solutions for n=3, k=4:
..0..0..0..2....0..0..2..0....0..2..0..0....0..2..0..2....0..0..2..3
..1..2..2..3....0..2..3..1....2..2..2..0....0..0..0..2....0..2..3..1
..2..2..3..1....2..0..1..3....2..2..0..0....2..0..1..3....1..2..0..1
		

Crossrefs

Columns 1-7 are A000244(n-1), A169634(n-1), A222439, A222440, A222441, A222442, A222443.
Main diagonal is A068254.
Cf. A078099 (3 colorings), A198715 (unlabeled 4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n,k) = 6*A198715(n,k) - 3 for n*k>1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 3*a(n-1).
k=2: a(n) = 7*a(n-1).
k=3: a(n) = 18*a(n-1) - 27*a(n-2).
k=4: a(n) = 45*a(n-1) - 267*a(n-2) + 263*a(n-3).
k=5: a(n) = 118*a(n-1) - 2811*a(n-2) + 22255*a(n-3) - 53860*a(n-4) - 54747*a(n-5) + 269406*a(n-6) - 175392*a(n-7).
k=6: [order 13]
k=7: [order 32]

A222281 T(n,k) = number of n X k 0..5 arrays with no entry increasing mod 6 by 5 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 5, 5, 25, 105, 25, 125, 2205, 2205, 125, 625, 46305, 194485, 46305, 625, 3125, 972405, 17153945, 17153945, 972405, 3125, 15625, 20420505, 1513010465, 6354787485, 1513010465, 20420505, 15625, 78125, 428830605, 133450391205
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2013

Keywords

Comments

1/6 the number of 6-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
........1................5......................25..........................125
........5..............105....................2205........................46305
.......25.............2205..................194485.....................17153945
......125............46305................17153945...................6354787485
......625...........972405..............1513010465................2354171487645
.....3125.........20420505............133450391205..............872117822449905
....15625........428830605..........11770577485085...........323081602357856985
....78125.......9005442705........1038187247574145........119687637492011211885
...390625.....189114296805.......91570083319317865......44339047670574481807485
..1953125....3971400232905.....8076654937439905005...16425682631297501047982145
..9765625...83399404891005...712376276332499775685.6084998755694142903356375385
.48828125.1751387502711105.62832938018547611186345
...
Some solutions for n=3, k=4:
..0..0..0..0....0..0..0..0....0..0..0..0....0..3..0..0....0..0..0..0
..4..2..0..1....1..2..0..4....0..0..0..1....0..0..3..1....0..2..3..0
..0..4..1..4....1..4..1..2....3..4..4..1....3..0..4..4....4..5..1..3
		

Crossrefs

Columns 1-7 are A000351(n-1), 5*A009965(n-1), A222276, A222277, A222278, A222279, A222280.
Main diagonal is A068256.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A198982 (unlabeled 6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n, k) = 5 * (24*A198982(n,k) - 12*A198715(n,k) - 8*A207997(n,k) - 3) for n*k > 1. - Andrew Howroyd, Jun 27 2017

A222340 T(n,k) = number of n X k 0..6 arrays with no entry increasing mod 7 by 6 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 6, 6, 36, 186, 36, 216, 5766, 5766, 216, 1296, 178746, 923526, 178746, 1296, 7776, 5541126, 147918906, 147918906, 5541126, 7776, 46656, 171774906, 23691810366, 122408393436, 23691810366, 171774906, 46656, 279936, 5325022086
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2013

Keywords

Comments

1/7 the number of 7-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.......1.............6...................36........................216
.......6...........186.................5766.....................178746
......36..........5766...............923526..................147918906
.....216........178746............147918906...............122408393436
....1296.......5541126..........23691810366............101297497221786
....7776.....171774906........3794659477146..........83827445649884946
...46656....5325022086......607781352505806.......69370328359709445996
..279936..165075684666....97346856728146986....57406526220963704077986
.1679616.5117346224646.15591808593304758846.47506035082750189614687546
...
Some solutions for n=3, k=4:
..0..0..2..0....0..2..2..0....0..0..0..0....0..2..0..0....0..2..0..0
..0..5..3..0....0..2..5..0....0..1..5..0....0..5..0..0....0..0..5..0
..3..1..4..5....4..4..2..3....3..6..1..4....2..2..2..2....4..1..3..4
		

Crossrefs

Columns 1-6 are A000400(n-1), A222335, A222336, A222337, A222338, A222339.
Main diagonal is A068257.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A198723 (unlabeled 7 colorings), A222462 (8 colorings).

Formula

T(n, k) = 6 * (120*A198723(n,k) - 60*A198906(n,k) - 40*A198715(n,k) - 15*A207997(n,k) - 4) for n*k > 1. - Andrew Howroyd, Jun 27 2017

A222462 T(n,k) = number of n X k 0..7 arrays with no entry increasing mod 8 by 7 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 7, 7, 49, 301, 49, 343, 12943, 12943, 343, 2401, 556549, 3418807, 556549, 2401, 16807, 23931607, 903055069, 903055069, 23931607, 16807, 117649, 1029059101, 238535974201, 1465295106499, 238535974201, 1029059101, 117649, 823543
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2013

Keywords

Comments

1/8 the number of 8-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
......1.............7..................49........................343
......7...........301...............12943.....................556549
.....49.........12943.............3418807..................903055069
....343........556549...........903055069..............1465295106499
...2401......23931607........238535974201...........2377584520856755
..16807....1029059101......63007686842527........3857863258420747009
.117649...44249541343...16643060295393343.....6259760185235726701945
.823543.1902730277749.4396153388210813341.10157072698503130798653535
...
Some solutions for n=3, k=4:
..0..4..2..3....0..0..0..4....0..4..6..1....0..4..0..4....0..2..6..2
..0..0..5..6....0..0..4..6....0..0..1..5....0..0..6..0....0..0..2..3
..0..0..0..1....0..0..5..1....0..0..3..5....0..0..0..1....0..0..3..5
		

Crossrefs

Columns 1-5 are A000420(n-1), 7*43^(n-1), A222459, A222460, A222461.
Main diagonal is A068258.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A198914 (unlabeled 8 colorings).

Formula

T(n, k) = 7 * (720*A198914(n,k) - 360*A198982(n,k) - 240*A198906(n,k) - 90*A198715(n,k) - 24*A207997(n,k) - 5) for n*k > 1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 7*a(n-1).
k=2: a(n) = 43*a(n-1).
k=3: a(n) = 270*a(n-1) - 1547*a(n-2).
k=4: a(n) = 1689*a(n-1) - 108775*a(n-2) + 1672631*a(n-3).
k=5: a(n) = 10754*a(n-1) - 8060499*a(n-2) + 2219242223*a(n-3) - 245682627864*a(n-4) + 5798947687589*a(n-5) + 448113231493438*a(n-6) - 2763020698450992*a(n-7).

A020698 a(n) = 5*a(n-1) - 2*a(n-2), with a(0)=2, a(1)=9.

Original entry on oeis.org

2, 9, 41, 187, 853, 3891, 17749, 80963, 369317, 1684659, 7684661, 35053987, 159900613, 729395091, 3327174229, 15177080963, 69231056357, 315801119859, 1440543486581, 6571115193187, 29974488992773, 136730214577491, 623702094901909, 2845050045354563
Offset: 0

Views

Author

Keywords

Comments

Coincides with Pisot sequence L(2,9) (at least for first 1000 terms).
Coincides with Pisot sequence E(2,9) (at least for first 1000 terms).
Theorem: E(2,9) satisfies a(n) = 5 a(n - 1) 2 2 a(n - 2) for n>=2. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the conjecture. - N. J. A. Sloane, Sep 09 2016
Number of ways to 3-color a 3 X (n+1) rectangular grid ignoring permutations of the colors. - Andrew Woods, Sep 07 2011

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 78).

Crossrefs

See A008776 for definitions of Pisot sequences.
Cf. A078099.

Programs

  • Magma
    m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2-x)/(1-5*x+2*x^2))); // Bruno Berselli, Sep 06 2011
    
  • Magma
    I:=[2, 9]; [n le 2 select I[n] else 5*Self(n-1)-2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 19 2013
  • Mathematica
    LinearRecurrence[{5,-2},{2,9},30] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
    CoefficientList[Series[(2 - x)/(1 - 5 x + 2 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 19 2013 *)
  • PARI
    a(n)=([2,1,2;1,1,1;2,1,2]^(n+1))[1,3]
    

Formula

If p[i]=Fibonacci(2i+1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
From Bruno Berselli, Sep 06 2011: (Start)
G.f.: (2-x)/(1-5*x+2*x^2).
a(n) = ((17+4*sqrt(17))*(5+sqrt(17))^n+(17-4*sqrt(17))*(5-sqrt(17))^n)/(17*2^n).
a(-n)*2^n = A052984(n-2). (End)
E.g.f.: 2*exp(5*x/2)*(17*cosh(sqrt(17)*x/2) + 4*sqrt(17)*sinh(sqrt(17)*x/2))/17. - Stefano Spezia, Jun 17 2025

A068253 1/3 of the number of colorings of an n X n square array with 3 colors.

Original entry on oeis.org

1, 6, 82, 2604, 193662, 33865632, 13956665236, 13574876544396, 31191658416342674, 169426507164530254380, 2176592549084872196370724, 66158464020552857153017287240, 4759146677426447759184119036493676, 810410082813497381147177065840601910384
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

See A047938 for number of improper colorings.
Main diagonal of A078099.
Twice A207993 for n>1.

Programs

  • Mathematica
    M[1] = {{1}}; M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]]; T[m_, 1] := 2^(m - 1); T[1, n_] := 2^(n - 1); T[m_, n_] := MatrixPower[W[m], n - 1] // Flatten // Total; a[n_] := T[n, n]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 01 2017, after code from A078099 *)

Formula

For formula see A078099.

Extensions

More terms from Vladeta Jovovic, Jul 22 2004
a(11)-a(12) from Alois P. Heinz, Mar 25 2009
a(13)-a(14) from Andrew Howroyd, Jun 26 2017

A078100 1/6 of the number of ways of 3-coloring a 4 X n grid.

Original entry on oeis.org

4, 27, 187, 1302, 9075, 63267, 441090, 3075255, 21440547, 149482638, 1042187067, 7266087315, 50658875658, 353191693599, 2462438631411, 17168025532662, 119694800484387, 834507453158019, 5818153224352338, 40563936024707079, 282810170576026755
Offset: 1

Views

Author

N. J. A. Sloane, Dec 05 2002

Keywords

Comments

Also the number of 3-colorings of the P_4 X P_n grid graph up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

References

  • Michael S. Paterson (Warwick), personal communication.

Crossrefs

Row 4 of (1/2)*A078099.
Row 4 of A207997.

Programs

  • Magma
    I:=[4,27,187]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 13 2016
  • Maple
    a:= n-> (Matrix([[27, 4, 2/3]]). Matrix([[9, 1, 0], [ -15, 0, 1], [6, 0, 0]])^n)[1, 3]: seq(a(n), n=1..30); # Alois P. Heinz, Mar 23 2009
  • Mathematica
    LinearRecurrence[{9, -15, 6}, {4, 27, 187}, 21] (* Jean-François Alcover, Feb 13 2016 *)

Formula

See A078099 for formula.
G.f.: x*(9*x-4-4*x^2) / (6*x^3-15*x^2+9*x-1). - Alois P. Heinz, Mar 23 2009

Extensions

More terms from Alois P. Heinz, Mar 23 2009
Name clarified by Andrew Howroyd, Jun 26 2017

A078101 1/6 of the number of ways of 3-coloring an (n-1) X n grid.

Original entry on oeis.org

1, 9, 187, 9075, 1034073, 277458045, 175605187731, 262459366542859, 927063711694234937, 7743238400519517700687, 152996488947929392223648350, 7153582340115101979222478030231, 791692010951982239786844983500390201, 207426783553049237691620430245372971070275
Offset: 2

Views

Author

N. J. A. Sloane, Dec 05 2002

Keywords

Comments

Also the number of 3-colorings of the P_{n-1} X P_n grid graph up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

References

  • Michael S. Paterson (Warwick), personal communication.

Crossrefs

A diagonal of A078099 and A207997.

Programs

  • Mathematica
    M[1] = {{1}};
    M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]];
    T[m_, 1] := 2^(m - 1);
    T[1, n_] := 2^(n - 1);
    T[m_, n_] := MatrixPower[ W[m], n - 1] // Flatten // Total;
    a[n_] := T[n - 1, n]/2;
    Table[Print[n]; a[n], {n, 2, 15}] (* Jean-François Alcover, Sep 16 2019 *)

Formula

See A078099 for formula.
a(n) = A207997(n-1, n) = A078099(n-1, n)/2. - Andrew Howroyd, Jun 26 2017

Extensions

a(7)-a(13) from Alois P. Heinz, Mar 25 2009
Name clarified and a(14)-a(15) from Andrew Howroyd, Jun 26 2017
Showing 1-10 of 11 results. Next