cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256082 Non-palindromic balanced numbers in base 2.

Original entry on oeis.org

70, 78, 150, 266, 282, 294, 310, 334, 350, 355, 371, 397, 413, 540, 554, 582, 630, 686, 723, 798, 813, 1036, 1042, 1068, 1074, 1098, 1116, 1130, 1148, 1158, 1178, 1190, 1210, 1221, 1238, 1253, 1270, 1302, 1305, 1334, 1337, 1347, 1358, 1379, 1390, 1427, 1438, 1459, 1470, 1483, 1515, 1550, 1557, 1582, 1589, 1613, 1630
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero.
This is the binary variant of the base-10 version A256075 invented by Eric Angelini. See A256081 for the primes in this sequence. See A256083 - A256089 and A256080 for variants in other bases.
If n is in the sequence with 2^d < n < 2^(d+1), then 2^(d+2)+2*n+1 is in the sequence, as are n*(2^k+1) for k > d. - Robert Israel, May 29 2018

Examples

			a(1) = 70 = 1000110[2] is balanced because 1*3 = 1*1 + 1*2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,m;
      L:= convert(n,base,2);
      m:= (1+nops(L))/2;
      add(L[i]*(i-m),i=1..nops(L))=0 and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$2..10000]); # Robert Israel, May 29 2018
  • PARI
    is(n,b=2,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A330491 Non-palindromic balanced primes in base 3.

Original entry on oeis.org

137, 991, 1109, 1237, 1291, 1301, 1471, 1663, 1721, 1861, 1871, 7057, 7219, 7507, 7537, 7699, 8291, 8597, 8707, 9091, 9587, 9697, 9857, 10159, 10163, 10211, 10273, 10321, 10627, 10631, 10739, 11027, 11437, 11551, 11777, 11887, 12239, 12401, 12659, 12671, 12821
Offset: 1

Views

Author

Thorben Böger, Dec 16 2019

Keywords

Comments

A number is called "balanced" here if the sum of digits weighted by their arithmetic distance from the "center" of the number is zero. Palindromic primes (A029971) are "trivially" balanced, so they are excluded here.
These are the primes in A256083, respectively the intersection of A000040 and A256083.

Examples

			a(7) = 1471 as 1471 is prime and 2000111 in base 3, which is balanced: 3*2 = 1*1 + 2*1 + 3*1.
		

Crossrefs

Programs

  • PARI
    ok(n)={my(v=digits(n,3)); isprime(n) && !sum(i=1, #v, v[i]*((#v+1)/2-i)) && Vecrev(v)<>v} \\ Andrew Howroyd, Dec 23 2019
  • Python
    from primes_file import primes#list containing first 3 million primesfrom baseconvert import base as bdef isbalanced(converted):    return sum([(place - (len(converted)/2 - 0.5))*digit for place, digit in enumerate(converted)]) == 0balanced_primes_list = [prime for prime in primes if(b(prime, 10, 3) != b(prime, 10, 3)[::-1] and isbalanced(b(prime, 10, 3)))]
    
Showing 1-2 of 2 results.