A256091 Numbers D such that D^2 = A^3 + B^4 + C^5 for some positive integers A, B, C.
5, 7, 9, 11, 17, 23, 25, 33, 38, 45, 55, 72, 79, 89, 95, 96, 99, 100, 103, 105, 117, 133, 137, 163, 171, 213, 218, 220, 237, 239, 240, 248, 255, 257, 282, 303, 305, 320, 347, 355, 362, 375, 384, 393, 407, 408, 411, 459, 475, 503, 506, 513, 525, 539, 540, 567, 581, 613, 616, 657, 659, 660, 751, 752, 761, 792, 796, 808, 824, 833
Offset: 1
Keywords
Examples
(A, B, C) = (1, 4, 2): 1^3 + 4^4 + 2^5 = 1 + 256 + 32 = 289 = 17^2, so 17 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
PARI
for(D=3,9999,for(C=1,sqrtn(D^2-2,5),for(B=1,sqrtn(D^2-C^5-1,4),ispower(D^2-C^5-B^4,3)&&print1(D","))))
-
PARI
for(D=3, 9999, ok = 0; for(C=1, sqrtn(D^2-2, 5), for(B=1, sqrtn(D^2-C^5-1, 4), ispower(D^2-C^5-B^4, 3)&&(ok=1)&&print1(D", "); if (ok, break)); if (ok, break))) \\ Michel Marcus, Apr 26 2015
Extensions
Inserted a(5)=17 and removed the doublet 525 by Lars Blomberg, Apr 26 2015
Comments