A256099 Decimal expansion of the real root of a cubic used by Omar Khayyám in a geometrical problem.
1, 5, 4, 3, 6, 8, 9, 0, 1, 2, 6, 9, 2, 0, 7, 6, 3, 6, 1, 5, 7, 0, 8, 5, 5, 9, 7, 1, 8, 0, 1, 7, 4, 7, 9, 8, 6, 5, 2, 5, 2, 0, 3, 2, 9, 7, 6, 5, 0, 9, 8, 3, 9, 3, 5, 2, 4, 0, 8, 0, 4, 0, 3, 7, 8, 3, 1, 1, 6, 8, 6, 7, 3, 9, 2, 7, 9, 7, 3, 8, 6, 6, 4, 8, 5, 1, 5, 7, 9, 1, 4, 5, 7, 6, 0, 5, 9, 1
Offset: 1
Examples
1.5436890126920763615708559...
References
- H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, pp. 190-192.
- O. Khayyam, A paper of Omar Khayyam, Scripta Math. 26 (1963), 323-337.
Links
- Wolfdieter Lang, A Geometrical Problem of Omar Khayyám and its Cubic.
- MacTutor History of Mathematics archive, Omar Khayyám
- Wikipedia, Omar Khayyám
Programs
-
Mathematica
RealDigits[Root[x^3 - 2 x^2 + 2 x - 2, 1], 10, 105][[1]] (* Jean-François Alcover, Oct 24 2019 *)
-
PARI
solve(x=1, 2, x^3-2*x^2+2*x-2) \\ Michel Marcus, Oct 24 2019
Formula
xtilde = tan(alpha) = ((3*sqrt(33) + 17)^(1/3) - (3*sqrt(33) - 17)^(1/3) + 2)/3 = 1.54368901269...
The corresponding angle alpha is approximately 57.065 degrees.
The real root of x^3-2*x^2+2*x-2. Equals tau^2-tau where tau is the tribonacci constant A058265. - N. J. A. Sloane, Jun 19 2019
Comments