A256100 In S = A007376 (read as a sequence) the digit S(n) appears a(n) times in the sequence S(1), ..., S(n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 4, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 10, 2, 11, 2, 12, 2, 3, 2, 4, 13, 5, 6, 7, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 4, 3, 5, 14, 6, 14, 7, 8, 9, 4, 10, 4, 11, 4, 12, 4, 13, 4, 14, 4, 5, 4, 6, 15, 7, 15, 8, 15, 9, 10, 11, 5, 12, 5, 13, 5, 14, 5, 15, 5, 6
Offset: 1
Examples
a(10) = 2 because A007376(10) = 1 and that sequence up to n=10 is 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, and 1 appears twice. a(24) = 10 because A007376(24) = 1 and this is the tenth 1 in A007376 up to, and including, A007376(24). Read as a tabf array a(n, k) with row length A055842(n) this begins: n\k 1 2 ... 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1 9: 1 10: 2 1 11: 3 4 12: 5 2 13: 6 2 14: 7 2 15: 8 2 16: 9 2 17: 10 2 18: 11 2 19: 12 2 20: 3 2 ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a256100 n = a256100_list !! (n-1) a256100_list = f a007376_list $ take 10 $ repeat 1 where f (d:ds) counts = y : f ds (xs ++ (y + 1) : ys) where (xs, y:ys) = splitAt d counts -- Reinhard Zumkeller, Aug 13 2015
-
Mathematica
lim = 120; s = Flatten[IntegerDigits /@ Range@ lim]; f[n_] := Block[{d = IntegerDigits /@ Take[s, n] // Flatten // FromDigits}, DigitCount[d][[If[ s[[n]] == 0, 10, s[[n]] ]] ] ]; Array[f, lim] (* Michael De Vlieger, Apr 08 2015, after Robert G. Wilson v at A007376 *)
Comments