cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256114 Numbers n such that digit_product(n^2) = (digit_product(n))^2 and n mod 10 > 0.

Original entry on oeis.org

1, 2, 3, 101, 102, 103, 104, 105, 201, 202, 203, 205, 301, 302, 303, 305, 401, 402, 403, 405, 501, 502, 503, 504, 505, 506, 507, 508, 509, 601, 602, 603, 605, 609, 661, 701, 702, 703, 705, 708, 709, 801, 802, 803, 805, 901, 902, 903, 905, 906, 983
Offset: 1

Views

Author

Reiner Moewald, Mar 15 2015

Keywords

Comments

Contains i*10^d + j for i>=1, j mod 10 > 0, j < 10^d/(20*i+1). - Robert Israel, Jun 05 2015

Examples

			digit_product(661^2) = digit_product(436921) = 1296 = 36^2 = (digit_product(661))^2.
		

Crossrefs

Programs

  • Magma
    [t: j in [1..9], k in [0..100] | &*Intseq(t^2) eq &*Intseq(t)^2 where t is 10*k+j]; // Bruno Berselli, Jun 23 2015
  • Maple
    pdigs:= n -> convert(convert(n,base,10),`*`):
    select(t -> pdigs(t^2)=pdigs(t)^2, [seq(seq(10*k+j,j=1..9),k=0..1000)]); # Robert Israel, Jun 05 2015
  • Mathematica
    pod[n_] := Times@@ IntegerDigits@ n; Select[ Range[10^4], Mod[#, 10] > 0 && pod[#]^2 == pod[#^2] &] (* Giovanni Resta, Jun 23 2015 *)
  • Python
    def product_digits(n):
       results = 1
       while n > 0:
          remainder = n % 10
          results *= remainder
          n = (n-remainder)/10
       return results
    pos = 0
    for a in range(1,1000000):
       if product_digits(a*a) == (product_digits(a))*(product_digits(a)) and (a%10 > 0):
          pos += 1
          print(pos, a)