A256117 Number T(n,k) of length 2n words such that all letters of the k-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 2, 0, 1, 9, 5, 0, 1, 34, 56, 14, 0, 1, 125, 465, 300, 42, 0, 1, 461, 3509, 4400, 1485, 132, 0, 1, 1715, 25571, 55692, 34034, 7007, 429, 0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430, 0, 1, 24309, 1325609, 7488228, 11187462, 6191808, 1447992, 143208, 4862
Offset: 0
Examples
T(0,0) = 1: (the empty word). T(1,1) = 1: aa. T(2,1) = 1: aaaa. T(2,2) = 2: aabb, abba. T(3,1) = 1: aaaaaa. T(3,2) = 9: aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba. T(3,3) = 5: aabbcc, aabccb, abbacc, abbcca, abccba. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 2; 0, 1, 9, 5; 0, 1, 34, 56, 14; 0, 1, 125, 465, 300, 42; 0, 1, 461, 3509, 4400, 1485, 132; 0, 1, 1715, 25571, 55692, 34034, 7007, 429; 0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]]; T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz, updated Jan 01 2021 *)
Comments