cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256150 Oblong numbers n such that sigma(n) is a triangular number.

Original entry on oeis.org

2, 12, 56, 342, 992, 16256, 17822, 169332, 628056, 1189190, 2720850, 11085570, 35599122, 67100672, 1147210770, 1317435912, 1707135806, 7800334080, 11208986256, 13366943840, 17109032402, 17179738112, 46343540900, 58413331032, 83717924940, 204574837700, 274877382656, 445968192672, 589130699852
Offset: 1

Views

Author

Antonio Roldán, Mar 16 2015

Keywords

Comments

The numbers 12, 56, 992, 16256, 67100672, ... (A139256(n), twice even perfect numbers) are in the sequence because they are oblong (A139256(n) = 2^k*(2^k-1)) and sigma(A139256(n)) = sigma(2^k*(2^k-1)) = sigma(2^k)*sigma(2^k-1) = (2^(k+1)-1)*2^(k+1)/2 is a triangular number.
This sequence is the intersection of A002378 and A045746.

Examples

			2 is in the sequence because 2=1*2 is oblong, and sigma(2) = 1+2 = 3 = 2*3/2 is triangular.
		

Crossrefs

Programs

  • Mathematica
    Select[2 Accumulate[Range@10000], MemberQ[Accumulate[Range@10000], DivisorSigma[1, #]] &] (* Michael De Vlieger, Mar 17 2015 *)
  • PARI
    {for (i=1,i=10^6,n=i*(i+1);if(ispolygonal(sigma(n), 3),print(n)))}