A256161 Triangle of allowable Stirling numbers of the second kind a(n,k).
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 6, 1, 1, 5, 26, 23, 9, 1, 1, 6, 57, 72, 50, 12, 1, 1, 7, 120, 201, 222, 86, 16, 1, 1, 8, 247, 522, 867, 480, 150, 20, 1, 1, 9, 502, 1291, 3123, 2307, 1080, 230, 25, 1, 1, 10, 1013, 3084, 10660, 10044, 6627, 2000, 355, 30, 1
Offset: 1
Examples
a(4,1) = 1 via 1111; a(4,2) = 3 via 1211, 1121, 1112; a(4,3) = 4 via 1213, 1231, 1233, 1123; a(4,4) = 1 via 1234. Triangle starts: 1; 1, 1; 1, 2, 1; 1, 3, 4, 1; 1, 4, 11, 6, 1; ...
Links
- Yue Cai and Margaret Readdy, Negative q-Stirling numbers, arXiv:1506.03249 [math.CO], 2015.
Programs
-
Mathematica
a[, 1] = a[n, n_] = 1; a[n_, k_] := a[n, k] = a[n-1, k-1] + Ceiling[k/2] a[n-1, k]; Table[a[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 15 2018 *)
Formula
a(n,k) = a(n-1,k-1) + ceiling(k/2)*a(n-1,k) for n >= 1 and 1 <= k <= n with boundary conditions a(n,0) = KroneckerDelta[n,0].
a(n,2) = n-1.
a(n,n-1) = floor(n/2)*ceiling(n/2).
Comments