A256200 Number of permutations in S_n that avoid the pattern 42351.
1, 1, 2, 6, 24, 119, 694, 4580, 33252, 260204, 2161930, 18861307, 171341565, 1610345257, 15579644765, 154541844196, 1566713947713, 16190122718865, 170171678529883, 1816001425551270, 19646035298044543, 215179180467834605, 2383465957654163227, 26673704385975326866
Offset: 0
Keywords
Links
- Anthony Guttmann, Table of n, a(n) for n = 0..27
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
Crossrefs
Programs
-
Mathematica
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p, lpat = Subsets[(n + 1) - Range[n], {Length[pat]}], psn = Permutations[Range[n]]}, For[i = 1, i <= Length[lpat], i++, p = lpat[[i]]; AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]]; ]; n! - Length[Union[Flatten[lseq, 1]]]]; Table[avoid[n, {4, 2, 3, 5, 1}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
Formula
a(n) = n! - A158434(n). - Andrew Howroyd, May 18 2020
Extensions
a(14)-a(15) added by Andrew Howroyd, May 18 2020
More terms from Anthony Guttmann, Sep 29 2021