A256208 Number of permutations in S_n that avoid the pattern 52341.
1, 1, 2, 6, 24, 119, 694, 4582, 33325, 261863, 2192390, 19358590, 178904675, 1720317763, 17132629082, 176055309619, 1861037944163, 20185165186517, 224150069984572, 2543698932578158, 29451619807433107, 347417296695040510, 4170088041714300134, 50874753262007210667
Offset: 0
Keywords
Links
- Anthony Guttmann, Table of n, a(n) for n = 0..23
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
Crossrefs
Programs
-
Mathematica
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p, lpat = Subsets[(n + 1) - Range[n], {Length[pat]}], psn = Permutations[Range[n]]}, For[i = 1, i <= Length[lpat], i++, p = lpat[[i]]; AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]]; ]; n! - Length[Union[Flatten[lseq, 1]]]]; Table[avoid[n, {5, 2, 3, 4, 1}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
Extensions
More terms from Anthony Guttmann, Sep 29 2021