cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A047889 Number of permutations in S_n with longest increasing subsequence of length <= 4.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704, 1705985883, 16891621166, 172188608886, 1801013405436, 19274897768196, 210573149141896, 2343553478425816, 26525044132374656, 304856947930144656
Offset: 0

Views

Author

Eric Rains (rains(AT)caltech.edu), N. J. A. Sloane

Keywords

Comments

Or, number of permutations in S_n that avoid the pattern 12345, - N. J. A. Sloane, Mar 19 2015
Also, the dimension of the space of SL(4)-invariants in V^m ⊗ (V^*)^m, where V is the standard 4-dimensional representation of SL(4) and V^* its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

Examples

			G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 119*x^5 + 694*x^6 + 4582*x^7 + ...
		

Crossrefs

A column of A047888.
Column k=4 of A214015.
Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208. - N. J. A. Sloane, Mar 19 2015

Programs

  • Maple
    A:=rsolve({a(0) = 1, a(1) = 1, (n^3 + 16*n^2 + 85*n + 150)*a(n + 2) = (20*n^3 + 182*n^2 + 510*n + 428)*a(n + 1) - (64*n^3 + 256*n^2 + 320*n +128)*a(n)}, a(n), makeproc): # Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
  • Mathematica
    Flatten[{1,RecurrenceTable[{64*(-1+n)^2*n*a[-2+n]-2*(-12 + 11*n + 31*n^2 + 10*n^3)*a[-1+n] + (3+n)^2*(4+n)*a[n]==0,a[1]==1,a[2]==2},a,{n,20}]}] (* Vaclav Kotesovec, Sep 10 2014 *)
  • PARI
    {a(n) = my(v); if( n<2, n>=0, v = vector(n+1, k, 1); for(k=2, n, v[k+1] = ((20*k^3 + 62*k^2 + 22*k - 24) * v[k] - 64*k*(k-1)^2 * v[k-1]) / ((k+3)^2 * (k+4))); v[n+1])}; /* Michael Somos, Apr 19 2015 */

Formula

a(0)=1, a(1)=1, (n^3 + 16*n^2 + 85*n + 150)*a(n+2) = (20*n^3 + 182*n^2 + 510*n + 428)*a(n+1) - (64*n^3 + 256*n^2 + 320*n + 128)*a(n). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
a(n) = (64*(n+1)*(2*n^3 + 21*n^2 + 76*n + 89)*A002895(n) -(8*n^4 + 104*n^3 + 526*n^2 + 1098*n + 776) *A002895(n+1)) / (3*(n+2)^3*(n+3)^3*(n+4)). - Mark van Hoeij, Jun 02 2010
a(n) ~ 3 * 2^(4*n + 9) / (n^(15/2) * Pi^(3/2)). - Vaclav Kotesovec, Sep 10 2014

Extensions

More terms from Naohiro Nomoto, Mar 01 2002
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar

A116485 Number of permutations in S_n that avoid the pattern 12453 (or equivalently, 31245).

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4581, 33286, 260927, 2174398, 19053058, 174094868, 1648198050, 16085475576, 161174636600, 1652590573612, 17292601075489, 184246699159418, 1995064785620557, 21919480341617102, 244015986016996763, 2749174129340156922, 31313478171012371344
Offset: 0

Views

Author

Zvezdelina Stankova (stankova(AT)mills.edu), Mar 19 2006

Keywords

Comments

a(n) is also the number of permutations in S_n that avoid the pattern 21453 or any of its symmetries. The Wilf class consists of 16 permutations. - David Bevan, Jun 17 2021

Crossrefs

Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208. - N. J. A. Sloane, Mar 19 2015

Programs

  • Mathematica
    avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
        lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
        psn = Permutations[Range[n]]},
       For[i = 1, i <= Length[lpat], i++,
        p = lpat[[i]];
        AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
        ]; n! - Length[Union[Flatten[lseq, 1]]]];
    Table[avoid[n, {1, 2, 4, 5, 3}], {n, 0, 8}]  (* Robert Price, Mar 27 2020 *)

Formula

Conjecture: a(n) + A158423(n) = n!. - Benedict W. J. Irwin, Mar 15 2016
The conjecture is true: All that is needed is to show that 23145 is Wilf-equivalent to 31245, but that’s obvious since they are inverses. - Doron Zeilberger and Yonah Biers-Ariel, Feb 26 2019
The exponential growth rate is 9+4*sqrt(2). See [Bona 2004]. - David Bevan, Jun 17 2021

Extensions

More terms from the Zvezdelina Stankova-Frenkel and Julian West paper. - N. J. A. Sloane, Mar 19 2015
More terms from Doron Zeilberger and Yonah Biers-Ariel, Feb 26 2019
More terms from Yonah Biers-Ariel, Mar 04 2019

A099952 Number of Wilf classes in S_n.

Original entry on oeis.org

1, 1, 1, 3, 16, 91, 595
Offset: 1

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

References

  • Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290.

Crossrefs

Representatives for the three Wilf classes in S_4 are A005802, A022558, A061552. - N. J. A. Sloane, Mar 15 2015
Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208. - N. J. A. Sloane, Mar 19 2015

A256195 Number of permutations in S_n that avoid the pattern 25314.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4578, 33184, 258757, 2136978, 18478134, 165857600, 1535336290, 14584260700, 141603589300, 1400942032152, 14087464765300, 143689133196008, 1484090443264936, 15499968503875136, 163501005435759505, 1740170514634463426, 18671118911254798454
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2015

Keywords

Crossrefs

Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
Cf. A099952.

Programs

  • Mathematica
    avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
        lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
        psn = Permutations[Range[n]]},
       For[i = 1, i <= Length[lpat], i++,
        p = lpat[[i]];
        AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
        ]; n! - Length[Union[Flatten[lseq, 1]]]];
    Table[avoid[n, {2, 5, 3, 1, 4}], {n, 0, 8}]  (* Robert Price, Mar 27 2020 *)

Extensions

a(14)-a(16) from Bert Dobbelaere, Mar 18 2021
More terms from Anthony Guttmann, Sep 29 2021

A256200 Number of permutations in S_n that avoid the pattern 42351.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4580, 33252, 260204, 2161930, 18861307, 171341565, 1610345257, 15579644765, 154541844196, 1566713947713, 16190122718865, 170171678529883, 1816001425551270, 19646035298044543, 215179180467834605, 2383465957654163227, 26673704385975326866
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2015

Keywords

Crossrefs

Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.

Programs

  • Mathematica
    avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
        lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
        psn = Permutations[Range[n]]},
       For[i = 1, i <= Length[lpat], i++,
        p = lpat[[i]];
        AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
        ]; n! - Length[Union[Flatten[lseq, 1]]]];
    Table[avoid[n, {4, 2, 3, 5, 1}], {n, 0, 8}]  (* Robert Price, Mar 27 2020 *)

Formula

a(n) = n! - A158434(n). - Andrew Howroyd, May 18 2020

Extensions

a(14)-a(15) added by Andrew Howroyd, May 18 2020
More terms from Anthony Guttmann, Sep 29 2021

A256196 Number of permutations in S_n that avoid the pattern 31524.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4579, 33216, 259401, 2147525, 18632512, 167969934, 1563027614, 14937175825, 146016423713, 1455402205257, 14753501614541, 151783381341695, 1582029822426003, 16681492660789425, 177726496203056670, 1911230701872865231, 20726637978574528119
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2015

Keywords

Crossrefs

Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
Cf. A099952.

Programs

  • Mathematica
    avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
        lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
        psn = Permutations[Range[n]]},
       For[i = 1, i <= Length[lpat], i++,
        p = lpat[[i]];
        AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
        ]; n! - Length[Union[Flatten[lseq, 1]]]];
    Table[avoid[n, {3, 1, 5, 2, 4}], {n, 0, 8}]  (* Robert Price, Mar 27 2020 *)

Extensions

a(14)-a(16) from Bert Dobbelaere, Mar 18 2021
More terms from Anthony Guttmann, Sep 29 2021

A256197 Number of permutations in S_n that avoid the pattern 35214.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4579, 33218, 259483, 2149558, 18672277, 168648090, 1573625606, 15093309024, 148223240022, 1485673163882, 15159644212775, 157142812302992, 1651865171372967, 17582693993265148, 189269329080075275, 2058215511081891400, 22589841589522026553
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2015

Keywords

Crossrefs

Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
Cf. A099952.

Programs

  • Mathematica
    avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
        lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
        psn = Permutations[Range[n]]},
       For[i = 1, i <= Length[lpat], i++,
        p = lpat[[i]];
        AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
        ]; n! - Length[Union[Flatten[lseq, 1]]]];
    Table[avoid[n, {3, 5, 2, 1, 4}], {n, 0, 8}]  (* Robert Price, Mar 27 2020 *)

Extensions

More terms from Anthony Guttmann, Sep 29 2021

A256198 Number of permutations in S_n that avoid the pattern 35124.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4580, 33249, 260092, 2159381, 18815124, 170605392, 1599499163, 15427796984, 152487271455, 1539554179950, 15836801521762, 165625811815111, 1757953168747511, 18908510233855411, 205838673911323648, 2265393020812413370, 25182471016157568626
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2015

Keywords

Crossrefs

Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
Cf. A099952.

Programs

  • Mathematica
    avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
        lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
        psn = Permutations[Range[n]]},
       For[i = 1, i <= Length[lpat], i++,
        p = lpat[[i]];
        AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
        ]; n! - Length[Union[Flatten[lseq, 1]]]];
    Table[avoid[n, {3, 5, 1, 2, 4}], {n, 0, 8}]  (* Robert Price, Mar 27 2020 *)

Extensions

More terms from Anthony Guttmann, Sep 29 2021

A256199 Number of permutations in S_n that avoid the pattern 53124.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4580, 33252, 260202, 2161837, 18858720, 171285237, 1609282391, 15561356705, 154246419725, 1562151687940, 16121960812335, 169178376076607, 1801800479418116, 19446010522240384, 212394673429250090, 2345064355131025130, 26148064110299271293
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2015

Keywords

Crossrefs

Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
Cf. A099952.

Programs

  • Mathematica
    avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
        lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
        psn = Permutations[Range[n]]},
       For[i = 1, i <= Length[lpat], i++,
        p = lpat[[i]];
        AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
        ]; n! - Length[Union[Flatten[lseq, 1]]]];
    Table[avoid[n, {5, 3, 1, 2, 4}], {n, 0, 8}]  (* Robert Price, Mar 27 2020 *)

Extensions

More terms from Anthony Guttmann, Sep 29 2021

A256201 Number of permutations in S_n that avoid the pattern 35241.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4580, 33254, 260285, 2163930, 18900534, 172016256, 1621031261, 15739870457, 156855197297, 1599233708733, 16638560125635, 176269571712376, 1898076560618372, 20742488003444465, 229747253093647567, 2576270755655436479, 29218474225923168362
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2015

Keywords

Crossrefs

Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
Cf. A099952.

Programs

  • Mathematica
    avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
        lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
        psn = Permutations[Range[n]]},
       For[i = 1, i <= Length[lpat], i++,
        p = lpat[[i]];
        AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
        ]; n! - Length[Union[Flatten[lseq, 1]]]];
    Table[avoid[n, {3, 5, 2, 4, 1}], {n, 0, 8}]  (* Robert Price, Mar 27 2020 *)

Extensions

More terms from Anthony Guttmann, Sep 29 2021
Showing 1-10 of 16 results. Next