Original entry on oeis.org
1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704
Offset: 0
A116485
Number of permutations in S_n that avoid the pattern 12453 (or equivalently, 31245).
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4581, 33286, 260927, 2174398, 19053058, 174094868, 1648198050, 16085475576, 161174636600, 1652590573612, 17292601075489, 184246699159418, 1995064785620557, 21919480341617102, 244015986016996763, 2749174129340156922, 31313478171012371344
Offset: 0
Zvezdelina Stankova (stankova(AT)mills.edu), Mar 19 2006
- Yonah Biers-Ariel, Table of n, a(n) for n = 0..37
- Yonah Biers-Ariel, Julia program to compute terms
- Miklos Bona, The limit of a Stanley-Wilf sequence is not always rational, and layered patterns beat monotone patterns, arXiv:math/0403502 [math.CO], 2004.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
-
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {1, 2, 4, 5, 3}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
More terms from the Zvezdelina Stankova-Frenkel and Julian West paper. -
N. J. A. Sloane, Mar 19 2015
A214015
Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 1, 0, 1, 1, 2, 6, 14, 1, 0, 1, 1, 2, 6, 23, 42, 1, 0, 1, 1, 2, 6, 24, 103, 132, 1, 0, 1, 1, 2, 6, 24, 119, 513, 429, 1, 0, 1, 1, 2, 6, 24, 120, 694, 2761, 1430, 1, 0, 1, 1, 2, 6, 24, 120, 719, 4582, 15767, 4862, 1, 0
Offset: 0
A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321. Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.
A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 1, 5, 6, 6, 6, 6, 6, ...
0, 1, 14, 23, 24, 24, 24, 24, ...
0, 1, 42, 103, 119, 120, 120, 120, ...
0, 1, 132, 513, 694, 719, 720, 720, ...
0, 1, 429, 2761, 4582, 5003, 5039, 5040, ...
Columns k=0-10 give:
A000007,
A000012,
A000108,
A005802,
A047889,
A047890,
A052399,
A072131,
A072132,
A072133,
A072167.
A(2n,n-1) gives
A269042(n) for n>0.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
A[n_, k_] := If[k >= n, n!, g[n, k, {}]];
Table [Table [A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A099952
Number of Wilf classes in S_n.
Original entry on oeis.org
1, 1, 1, 3, 16, 91, 595
Offset: 1
- Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290.
A256195
Number of permutations in S_n that avoid the pattern 25314.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4578, 33184, 258757, 2136978, 18478134, 165857600, 1535336290, 14584260700, 141603589300, 1400942032152, 14087464765300, 143689133196008, 1484090443264936, 15499968503875136, 163501005435759505, 1740170514634463426, 18671118911254798454
Offset: 0
- Anthony Guttmann, Table of n, a(n) for n = 0..26
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
-
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {2, 5, 3, 1, 4}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
A256208
Number of permutations in S_n that avoid the pattern 52341.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4582, 33325, 261863, 2192390, 19358590, 178904675, 1720317763, 17132629082, 176055309619, 1861037944163, 20185165186517, 224150069984572, 2543698932578158, 29451619807433107, 347417296695040510, 4170088041714300134, 50874753262007210667
Offset: 0
- Anthony Guttmann, Table of n, a(n) for n = 0..23
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
-
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {5, 2, 3, 4, 1}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
A052399
Number of permutations in S_n with longest increasing subsequence of length <= 6.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 5039, 40270, 361302, 3587916, 38957991, 457647966, 5763075506, 77182248916, 1091842643475, 16219884281650, 251774983140578, 4066273930979460, 68077194367392864, 1177729684507324152, 20995515989327134152, 384762410996641402384
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
- Index entries for sequences related to Young tableaux.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 6, []):
seq(a(n), n=0..25); # Alois P. Heinz, Apr 10 2012
# second Maple program
a:= proc(n) option remember; `if`(n<7, n!,
((56*n^5-9408+11032*n+19028*n^2+7360*n^3+1092*n^4)*a(n-1)
-4*(196*n^3+1608*n^2+3167*n+444)*(n-1)^2*a(n-2)
+1152*(2*n+3)*(n-1)^2*(n-2)^2*a(n-3))/ ((n+9)*(n+8)^2*(n+5)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 26 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_, k_] := If[k >= n, n!, g[n, k, {}]]; Table[a[n, 6], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
A072131
T_7(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 2, 6, 24, 120, 720, 5040, 40319, 362815, 3626197, 39832877, 476591309, 6162155981, 85494566892, 1264755621000, 19835792076675, 328115505900675, 5698062006852574, 103455252673577866, 1956590161853191160, 38418713005615268760, 780931481835878011620
Offset: 1
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002
- Alois P. Heinz, Table of n, a(n) for n = 1..200
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
a:= proc(n) option remember; `if`(n<8, n!, ((-343035+429858*n
+238440*n^3+38958*n^4+634756*n^2+2940*n^5+84*n^6)*a(n-1)
-(1974*n^4+36336*n^3+213240*n^2+407840*n+82425)*(n-1)^2*a(n-2)
+2*(49875+42646*n+6458*n^2)*(n-1)^2*(n-2)^2*a(n-3)
-11025*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4))/ ((n+6)^2*(n+10)^2*(n+12)^2))
end:
seq (a(n), n=1..30); # Alois P. Heinz, Sep 26 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 7, n!, g[n, 7, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)
A072132
T_8(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 2, 6, 24, 120, 720, 5040, 40320, 362879, 3628718, 39912738, 478842196, 6221523082, 87002638276, 1302313974900, 20763508263000, 351019617373500, 6266271456118776, 117671982989344680, 2316256222907194304, 47635421509263043024, 1020455890785584587168
Offset: 1
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002
- Alois P. Heinz, Table of n, a(n) for n = 1..586
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
a:= proc(n) option remember; `if`(n<4, n!,
(-147456*(n+4)*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4)
+128*(33876+30709*n+6687*n^2+410*n^3)*(n-1)^2*(n-2)^2*a(n-3)
-4*(1092*n^5+37140*n^4+455667*n^3+2387171*n^2+4649270*n+1206000)*
(n-1)^2*a(n-2) +(-17075520+(22488312+(29223280+(10509820+(1764252+
(154164+(6804+120*n)*n)*n)*n)*n)*n)*n)*a(n-1))/
((n+16)*(n+7)^2*(n+15)^2*(n+12)^2))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Sep 28 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 8, n!, g[n, 8, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)
A072133
T_9(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628799, 39916699, 478995537, 6226736369, 87166698628, 1307240982000, 20907446718225, 355162464899601, 6384776070987990, 121061600999380138, 2413632612087046844, 50453964720806671644, 1102844526263334763556
Offset: 0
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002
- Alois P. Heinz, Table of n, a(n) for n = 0..561
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
a:= proc(n) option remember;
`if`(n<5, n!, ((-1110790863+(1520978576+(1772290401+(607308786+
(101671498+(9464664+(500874+(14124+165*n)*n)*n)*n)*n)*n)*n)*n)*a(n-1)
-(1129886062*n+559908333*n^2+111239576*n^3+10655238*n^4+8778*n^6
+491700*n^5 +353895381)*(n-1)^2*a(n-2) +(258011271+234066216*n
+58221266*n^2+5463876*n^3 +172810*n^4)*(n-1)^2*(n-2)^2*a(n-3)
-9*(4070430+1504292*n+117469*n^2)* (n-1)^2*(n-2)^2*(n-3)^2*a(n-4)
+893025*(n-1)^2*(n-2)^2*(n-3)^2*(n-4)^2*a(n-5)) /
((n+20)^2*(n+8)^2*(n+18)^2*(n+14)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 10 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 9, n!, g[n, 9, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)
Showing 1-10 of 29 results.
Comments