A047889
Number of permutations in S_n with longest increasing subsequence of length <= 4.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704, 1705985883, 16891621166, 172188608886, 1801013405436, 19274897768196, 210573149141896, 2343553478425816, 26525044132374656, 304856947930144656
Offset: 0
G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 119*x^5 + 694*x^6 + 4582*x^7 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..300
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Peter J. Forrester and Fei Wei, Higher order linear differential equations for unitary matrix integrals: applications and generalisations, arXiv:2508.20797 [math-ph], 2025.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory A 53 (1990), 257-285.
- Permutation Pattern Avoidance Library (PermPAL), 12345
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
- Index entries for sequences related to Young tableaux.
-
A:=rsolve({a(0) = 1, a(1) = 1, (n^3 + 16*n^2 + 85*n + 150)*a(n + 2) = (20*n^3 + 182*n^2 + 510*n + 428)*a(n + 1) - (64*n^3 + 256*n^2 + 320*n +128)*a(n)}, a(n), makeproc): # Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
-
Flatten[{1,RecurrenceTable[{64*(-1+n)^2*n*a[-2+n]-2*(-12 + 11*n + 31*n^2 + 10*n^3)*a[-1+n] + (3+n)^2*(4+n)*a[n]==0,a[1]==1,a[2]==2},a,{n,20}]}] (* Vaclav Kotesovec, Sep 10 2014 *)
-
{a(n) = my(v); if( n<2, n>=0, v = vector(n+1, k, 1); for(k=2, n, v[k+1] = ((20*k^3 + 62*k^2 + 22*k - 24) * v[k] - 64*k*(k-1)^2 * v[k-1]) / ((k+3)^2 * (k+4))); v[n+1])}; /* Michael Somos, Apr 19 2015 */
A214015
Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 1, 0, 1, 1, 2, 6, 14, 1, 0, 1, 1, 2, 6, 23, 42, 1, 0, 1, 1, 2, 6, 24, 103, 132, 1, 0, 1, 1, 2, 6, 24, 119, 513, 429, 1, 0, 1, 1, 2, 6, 24, 120, 694, 2761, 1430, 1, 0, 1, 1, 2, 6, 24, 120, 719, 4582, 15767, 4862, 1, 0
Offset: 0
A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321. Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.
A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 1, 5, 6, 6, 6, 6, 6, ...
0, 1, 14, 23, 24, 24, 24, 24, ...
0, 1, 42, 103, 119, 120, 120, 120, ...
0, 1, 132, 513, 694, 719, 720, 720, ...
0, 1, 429, 2761, 4582, 5003, 5039, 5040, ...
Columns k=0-10 give:
A000007,
A000012,
A000108,
A005802,
A047889,
A047890,
A052399,
A072131,
A072132,
A072133,
A072167.
A(2n,n-1) gives
A269042(n) for n>0.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
A[n_, k_] := If[k >= n, n!, g[n, k, {}]];
Table [Table [A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A047890
Number of permutations in S_n with longest increasing subsequence of length <= 5.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 719, 5003, 39429, 344837, 3291590, 33835114, 370531683, 4285711539, 51990339068, 657723056000, 8636422912277, 117241501095189, 1639974912709122, 23570308719710838, 347217077020664880, 5231433025400049936, 80466744544235325387
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..735
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513, 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Permutation Pattern Avoidance Library (PermPAL), 012345
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
- Index entries for sequences related to Young tableaux.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l)
`if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> g(n, 5, []):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 10 2012
# second Maple program
a:= proc(n) option remember; `if`(n<6, n!, ((-375+400*n+843*n^2
+322*n^3+35*n^4)*a(n-1) +225*(n-1)^2*(n-2)^2*a(n-3)
-(259*n^2+622*n+45)*(n-1)^2*a(n-2))/ ((n+6)^2*(n+4)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 26 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_, k_] := If[k >= n, n!, g[n, k, {}]]; Table[a[n, 5], {n, 1, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
A072131
T_7(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 2, 6, 24, 120, 720, 5040, 40319, 362815, 3626197, 39832877, 476591309, 6162155981, 85494566892, 1264755621000, 19835792076675, 328115505900675, 5698062006852574, 103455252673577866, 1956590161853191160, 38418713005615268760, 780931481835878011620
Offset: 1
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002
- Alois P. Heinz, Table of n, a(n) for n = 1..200
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
a:= proc(n) option remember; `if`(n<8, n!, ((-343035+429858*n
+238440*n^3+38958*n^4+634756*n^2+2940*n^5+84*n^6)*a(n-1)
-(1974*n^4+36336*n^3+213240*n^2+407840*n+82425)*(n-1)^2*a(n-2)
+2*(49875+42646*n+6458*n^2)*(n-1)^2*(n-2)^2*a(n-3)
-11025*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4))/ ((n+6)^2*(n+10)^2*(n+12)^2))
end:
seq (a(n), n=1..30); # Alois P. Heinz, Sep 26 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 7, n!, g[n, 7, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)
A072132
T_8(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 2, 6, 24, 120, 720, 5040, 40320, 362879, 3628718, 39912738, 478842196, 6221523082, 87002638276, 1302313974900, 20763508263000, 351019617373500, 6266271456118776, 117671982989344680, 2316256222907194304, 47635421509263043024, 1020455890785584587168
Offset: 1
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002
- Alois P. Heinz, Table of n, a(n) for n = 1..586
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
a:= proc(n) option remember; `if`(n<4, n!,
(-147456*(n+4)*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4)
+128*(33876+30709*n+6687*n^2+410*n^3)*(n-1)^2*(n-2)^2*a(n-3)
-4*(1092*n^5+37140*n^4+455667*n^3+2387171*n^2+4649270*n+1206000)*
(n-1)^2*a(n-2) +(-17075520+(22488312+(29223280+(10509820+(1764252+
(154164+(6804+120*n)*n)*n)*n)*n)*n)*n)*a(n-1))/
((n+16)*(n+7)^2*(n+15)^2*(n+12)^2))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Sep 28 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 8, n!, g[n, 8, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)
A072133
T_9(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628799, 39916699, 478995537, 6226736369, 87166698628, 1307240982000, 20907446718225, 355162464899601, 6384776070987990, 121061600999380138, 2413632612087046844, 50453964720806671644, 1102844526263334763556
Offset: 0
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002
- Alois P. Heinz, Table of n, a(n) for n = 0..561
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
a:= proc(n) option remember;
`if`(n<5, n!, ((-1110790863+(1520978576+(1772290401+(607308786+
(101671498+(9464664+(500874+(14124+165*n)*n)*n)*n)*n)*n)*n)*n)*a(n-1)
-(1129886062*n+559908333*n^2+111239576*n^3+10655238*n^4+8778*n^6
+491700*n^5 +353895381)*(n-1)^2*a(n-2) +(258011271+234066216*n
+58221266*n^2+5463876*n^3 +172810*n^4)*(n-1)^2*(n-2)^2*a(n-3)
-9*(4070430+1504292*n+117469*n^2)* (n-1)^2*(n-2)^2*(n-3)^2*a(n-4)
+893025*(n-1)^2*(n-2)^2*(n-3)^2*(n-4)^2*a(n-5)) /
((n+20)^2*(n+8)^2*(n+18)^2*(n+14)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 10 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 9, n!, g[n, 9, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)
A159175
Number of permutations of 1..n containing the relative rank sequence { 1234567 } at any spacing.
Original entry on oeis.org
1, 50, 1578, 40884, 958809, 21353634, 463945294, 9996042284, 215831724525, 4702905606350, 103912444955422, 2336099774748540, 53567906041439136, 1255172323669315848, 30095426182382305848, 739238316780966277616, 18619024923770934306358, 481234428294016650524172
Offset: 7
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> n! -g(n, 6, []):
seq(a(n), n=7..25); # Alois P. Heinz, Jul 05 2012
# second Maple program
a:= proc(n) option remember; `if`(n<7, 0, `if`(n=7, 1, ((-93464*n+1072*n^4
+72128-125284*n^2+84*n^6+994*n^5-30491*n^3+n^7) *a(n-1)
-4*(14*n^5+399*n^4+1124*n^3-7354*n^2-23983*n-5042)*(n-1)^2 *a(n-2)
+4*(-7359-2629*n+1596*n^2+196*n^3)*(n-1)^2*(n-2)^2 *a(n-3)
-1152*(1+2*n)*(n-1)^2*(n-2)^2*(n-3)^2 *a(n-4))/
((n-7)*(n+9)*(n+8)^2*(n+5)^2)))
end:
seq(a(n), n=7..30); # Alois P. Heinz, Sep 27 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
a[n_] := n! - g[n, 6, {}];
Table[a[n], {n, 7, 25}] (* Jean-François Alcover, Jun 19 2018, from first Maple program *)
A072167
T_10(n) in the notation of Bergeron et al., u_10(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916799, 479001478, 6227012074, 87177809092, 1307651456625, 20921799763626, 355647213494682, 6400805686152436, 121585553747301448, 2430677026538811240
Offset: 1
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 29 2002
- Vaclav Kotesovec, Table of n, a(n) for n = 1..500
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! / mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 10, []):
seq(a(n), n=0..25); # Vaclav Kotesovec, Sep 10 2014, after Alois P. Heinz
-
RecurrenceTable[{-7372800*(-4 + n)^2*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(15 + 2*n)*a[-5 + n] + 256*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(11018760 + 4743323*n + 577824*n^2 + 21076*n^3)*a[-4 + n]-8*(-2 + n)^2*(-1 + n)^2*(2488711560 + 2208119423*n + 580006399*n^2 + 64938154*n^3 + 3273732*n^4 + 61160*n^5)*a[-3 + n] + 4*(-1 + n)^2*(8002290720 + 21962910556*n + 10433770264*n^2 + 2088552609*n^3 + 215646686*n^4 + 12084237*n^5 + 349536*n^6 + 4092*n^7)*a[-2 + n]-2*(-45705600000 + 64584000000*n + 68412531600*n^2 + 22314826244*n^3 + 3672058745*n^4 + 350428790*n^5 + 20286926*n^6 + 704088*n^7 + 13497*n^8 + 110*n^9)*a[-1 + n] + (9 + n)^2*(16 + n)^2*(21 + n)^2*(24 + n)^2*(25 + n)*a[n]==0,a[1]==1,a[2]==2,a[3]==6,a[4]==24,a[5]==120},a,{n,1,20}] (* Vaclav Kotesovec, Sep 10 2014 *)
Showing 1-8 of 8 results.
Comments