cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A052398 Duplicate of A047890.

Original entry on oeis.org

1, 2, 6, 24, 120, 719, 5003, 39429, 344837, 3291590, 33835114, 370531683
Offset: 0

Views

Author

Keywords

A047889 Number of permutations in S_n with longest increasing subsequence of length <= 4.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704, 1705985883, 16891621166, 172188608886, 1801013405436, 19274897768196, 210573149141896, 2343553478425816, 26525044132374656, 304856947930144656
Offset: 0

Views

Author

Eric Rains (rains(AT)caltech.edu), N. J. A. Sloane

Keywords

Comments

Or, number of permutations in S_n that avoid the pattern 12345, - N. J. A. Sloane, Mar 19 2015
Also, the dimension of the space of SL(4)-invariants in V^m ⊗ (V^*)^m, where V is the standard 4-dimensional representation of SL(4) and V^* its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

Examples

			G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 119*x^5 + 694*x^6 + 4582*x^7 + ...
		

Crossrefs

A column of A047888.
Column k=4 of A214015.
Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208. - N. J. A. Sloane, Mar 19 2015

Programs

  • Maple
    A:=rsolve({a(0) = 1, a(1) = 1, (n^3 + 16*n^2 + 85*n + 150)*a(n + 2) = (20*n^3 + 182*n^2 + 510*n + 428)*a(n + 1) - (64*n^3 + 256*n^2 + 320*n +128)*a(n)}, a(n), makeproc): # Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
  • Mathematica
    Flatten[{1,RecurrenceTable[{64*(-1+n)^2*n*a[-2+n]-2*(-12 + 11*n + 31*n^2 + 10*n^3)*a[-1+n] + (3+n)^2*(4+n)*a[n]==0,a[1]==1,a[2]==2},a,{n,20}]}] (* Vaclav Kotesovec, Sep 10 2014 *)
  • PARI
    {a(n) = my(v); if( n<2, n>=0, v = vector(n+1, k, 1); for(k=2, n, v[k+1] = ((20*k^3 + 62*k^2 + 22*k - 24) * v[k] - 64*k*(k-1)^2 * v[k-1]) / ((k+3)^2 * (k+4))); v[n+1])}; /* Michael Somos, Apr 19 2015 */

Formula

a(0)=1, a(1)=1, (n^3 + 16*n^2 + 85*n + 150)*a(n+2) = (20*n^3 + 182*n^2 + 510*n + 428)*a(n+1) - (64*n^3 + 256*n^2 + 320*n + 128)*a(n). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
a(n) = (64*(n+1)*(2*n^3 + 21*n^2 + 76*n + 89)*A002895(n) -(8*n^4 + 104*n^3 + 526*n^2 + 1098*n + 776) *A002895(n+1)) / (3*(n+2)^3*(n+3)^3*(n+4)). - Mark van Hoeij, Jun 02 2010
a(n) ~ 3 * 2^(4*n + 9) / (n^(15/2) * Pi^(3/2)). - Vaclav Kotesovec, Sep 10 2014

Extensions

More terms from Naohiro Nomoto, Mar 01 2002
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar

A214015 Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 1, 0, 1, 1, 2, 6, 14, 1, 0, 1, 1, 2, 6, 23, 42, 1, 0, 1, 1, 2, 6, 24, 103, 132, 1, 0, 1, 1, 2, 6, 24, 119, 513, 429, 1, 0, 1, 1, 2, 6, 24, 120, 694, 2761, 1430, 1, 0, 1, 1, 2, 6, 24, 120, 719, 4582, 15767, 4862, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 01 2012

Keywords

Comments

A(n,k) is also the sum of the squares of numbers of standard Young tableaux (SYT) of height <= k over all partitions of n.
This array is a larger and reflected version of A047888.
Column k>1 is asymptotic to (Product_{j=1..k} j!) * k^(2*n + k^2/2) / (Pi^((k-1)/2) * 2^((k-1)*(k+2)/2) * n^((k^2-1)/2)). - Vaclav Kotesovec, Sep 10 2014

Examples

			A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321.  Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.
A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:
  +------+  +------+  +---------+  +---------+  +---------+  +------------+
  | 1  3 |  | 1  2 |  | 1  3  4 |  | 1  2  4 |  | 1  2  3 |  | 1  2  3  4 |
  | 2  4 |  | 3  4 |  | 2 .-----+  | 3 .-----+  | 4 .-----+  +------------+
  +------+  +------+  +---+        +---+        +---+
Square array A(n,k) begins:
  1,  1,   1,    1,    1,    1,    1,    1, ...
  0,  1,   1,    1,    1,    1,    1,    1, ...
  0,  1,   2,    2,    2,    2,    2,    2, ...
  0,  1,   5,    6,    6,    6,    6,    6, ...
  0,  1,  14,   23,   24,   24,   24,   24, ...
  0,  1,  42,  103,  119,  120,  120,  120, ...
  0,  1, 132,  513,  694,  719,  720,  720, ...
  0,  1, 429, 2761, 4582, 5003, 5039, 5040, ...
		

Crossrefs

Differences between A000142 and columns k=0-9 give: A000142 (for n>0), A033312, A056986, A158005, A158432, A159139, A159175, A217675, A217676, A217677.
Main diagonal and first lower diagonal give: A000142, A033312.
A(2n,n-1) gives A269042(n) for n>0.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                     add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    A[n_, k_] := If[k >= n, n!, g[n, k, {}]];
    Table [Table [A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)

A052399 Number of permutations in S_n with longest increasing subsequence of length <= 6.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5039, 40270, 361302, 3587916, 38957991, 457647966, 5763075506, 77182248916, 1091842643475, 16219884281650, 251774983140578, 4066273930979460, 68077194367392864, 1177729684507324152, 20995515989327134152, 384762410996641402384
Offset: 0

Views

Author

N. J. A. Sloane, Mar 13 2000

Keywords

Comments

Previous name was: Related to Young tableaux of bounded height.

Crossrefs

Column k=6 of A214015.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) option remember;
          `if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
           g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
        end:
    a:= n-> g(n, 6, []):
    seq(a(n), n=0..25); # Alois P. Heinz, Apr 10 2012
    # second Maple program
    a:= proc(n) option remember; `if`(n<7, n!,
          ((56*n^5-9408+11032*n+19028*n^2+7360*n^3+1092*n^4)*a(n-1)
           -4*(196*n^3+1608*n^2+3167*n+444)*(n-1)^2*a(n-2)
           +1152*(2*n+3)*(n-1)^2*(n-2)^2*a(n-3))/ ((n+9)*(n+8)^2*(n+5)^2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 26 2012
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_, k_] := If[k >= n, n!, g[n, k, {}]]; Table[a[n, 6], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)

Formula

a(n) ~ 5 * 2^(2*n + 6) * 3^(2*n + 21) / (n^(35/2) * Pi^(5/2)). - Vaclav Kotesovec, Sep 10 2014

Extensions

More terms from Alois P. Heinz, Apr 10 2012
New name from Vaclav Kotesovec, Sep 10 2014

A072131 T_7(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40319, 362815, 3626197, 39832877, 476591309, 6162155981, 85494566892, 1264755621000, 19835792076675, 328115505900675, 5698062006852574, 103455252673577866, 1956590161853191160, 38418713005615268760, 780931481835878011620
Offset: 1

Views

Author

Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002

Keywords

Crossrefs

Cf. A052399 for T_6(n), A047890 for T_5(n), A047889 for T_4(n).
Column k=7 of A214015.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<8, n!, ((-343035+429858*n
           +238440*n^3+38958*n^4+634756*n^2+2940*n^5+84*n^6)*a(n-1)
           -(1974*n^4+36336*n^3+213240*n^2+407840*n+82425)*(n-1)^2*a(n-2)
           +2*(49875+42646*n+6458*n^2)*(n-1)^2*(n-2)^2*a(n-3)
           -11025*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4))/ ((n+6)^2*(n+10)^2*(n+12)^2))
        end:
    seq (a(n), n=1..30);  # Alois P. Heinz, Sep 26 2012
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 7, n!, g[n, 7, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)

Formula

a(n) ~ 6075 * 7^(2*n + 49/2) / (32768 * n^24 * Pi^3). - Vaclav Kotesovec, Sep 10 2014

Extensions

Typo in title corrected by Joel B. Lewis, Jul 16 2009

A072132 T_8(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362879, 3628718, 39912738, 478842196, 6221523082, 87002638276, 1302313974900, 20763508263000, 351019617373500, 6266271456118776, 117671982989344680, 2316256222907194304, 47635421509263043024, 1020455890785584587168
Offset: 1

Views

Author

Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002

Keywords

Crossrefs

Cf. A052399 for T_6(n), A047890 for T_5(n), A047889 for T_4(n).
Column k=8 of A214015.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n!,
          (-147456*(n+4)*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4)
          +128*(33876+30709*n+6687*n^2+410*n^3)*(n-1)^2*(n-2)^2*a(n-3)
          -4*(1092*n^5+37140*n^4+455667*n^3+2387171*n^2+4649270*n+1206000)*
          (n-1)^2*a(n-2) +(-17075520+(22488312+(29223280+(10509820+(1764252+
          (154164+(6804+120*n)*n)*n)*n)*n)*n)*n)*a(n-1))/
          ((n+16)*(n+7)^2*(n+15)^2*(n+12)^2))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 28 2012
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 8, n!, g[n, 8, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)

Formula

a(n) ~ 1913625 * 2^(6*n + 77) / (n^(63/2) * Pi^(7/2)). - Vaclav Kotesovec, Sep 10 2014

A072133 T_9(n) in the notation of Bergeron et al., u_k(n) in the notation of Gessel: Related to Young tableaux of bounded height.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628799, 39916699, 478995537, 6226736369, 87166698628, 1307240982000, 20907446718225, 355162464899601, 6384776070987990, 121061600999380138, 2413632612087046844, 50453964720806671644, 1102844526263334763556
Offset: 0

Views

Author

Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002

Keywords

Crossrefs

Cf. A052399 for T_6(n), A047890 for T_5(n), A047889 for T_4(n).
Column k=9 of A214015.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<5, n!, ((-1110790863+(1520978576+(1772290401+(607308786+
           (101671498+(9464664+(500874+(14124+165*n)*n)*n)*n)*n)*n)*n)*n)*a(n-1)
           -(1129886062*n+559908333*n^2+111239576*n^3+10655238*n^4+8778*n^6
           +491700*n^5 +353895381)*(n-1)^2*a(n-2) +(258011271+234066216*n
           +58221266*n^2+5463876*n^3 +172810*n^4)*(n-1)^2*(n-2)^2*a(n-3)
           -9*(4070430+1504292*n+117469*n^2)* (n-1)^2*(n-2)^2*(n-3)^2*a(n-4)
           +893025*(n-1)^2*(n-2)^2*(n-3)^2*(n-4)^2*a(n-5)) /
           ((n+20)^2*(n+8)^2*(n+18)^2*(n+14)^2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 10 2012
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 9, n!, g[n, 9, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)

Formula

a(n) ~ 30625 * 3^(4*n + 90) / (2097152 * n^40 * Pi^4). - Vaclav Kotesovec, Sep 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 09 2017

A159139 Number of permutations of 1..n containing the relative rank sequence { 213465 } at any spacing.

Original entry on oeis.org

1, 37, 891, 18043, 337210, 6081686, 108469917, 1941309261, 35187952132, 649951312000, 12286366975723, 238445927000811, 4762398793018878, 98074791689121162, 2085684931155975120, 45859509146309390064, 1043533983233372354613, 24590543663448304800169
Offset: 6

Views

Author

R. H. Hardin, Apr 05 2009

Keywords

Comments

Same series for 654321 123456 564321 213456 123465 654312 456321 321456 123654 654123 345621 432156 126543 651234 564312 456312 321465 213654 564123 345612 432165 216543 561234 234561 543216 165432 612345 456123 321654.

Crossrefs

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l)
          `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
           add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
        end:
    a:= n-> n! -g(n, 5, []):
    seq(a(n), n=6..30);  # Alois P. Heinz, Jul 05 2012
    # second Maple program
    a:= proc(n) option remember; `if`(n<6, 0, `if`(n=6, 1,
         ((2475-4819*n^2-2985*n+175*n^4-1021*n^3+n^6+49*n^5)*a(n-1)
         -(35*n^4+441*n^3-845*n^2-4147*n-489)*(n-1)^2*a(n-2)
         +(-1668+329*n+259*n^2)*(n-1)^2*(n-2)^2*a(n-3)
         -225*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4))/ ((n-6)*(n+6)^2*(n+4)^2)))
        end:
    seq(a(n), n=6..30);  # Alois P. Heinz, Sep 26 2012
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
    a[n_] := n! - g[n, 5, {}];
    Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Jun 19 2018, from first Maple program *)

Formula

a(n) = A214152(n,6) = A000142(n)-A047890(n) = A000142(n)-A214015(n,5). - Alois P. Heinz, Jul 05 2012

Extensions

More terms from Alois P. Heinz, Jul 05 2012

A072167 T_10(n) in the notation of Bergeron et al., u_10(n) in the notation of Gessel: Related to Young tableaux of bounded height.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916799, 479001478, 6227012074, 87177809092, 1307651456625, 20921799763626, 355647213494682, 6400805686152436, 121585553747301448, 2430677026538811240
Offset: 1

Views

Author

Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 29 2002

Keywords

Comments

In general, column k > 1 of A214015 is asymptotic to (Product_{j=1..k} j!) * k^(2*n + k^2/2) / (Pi^((k-1)/2) * 2^((k-1)*(k+2)/2) * n^((k^2-1)/2)). - Vaclav Kotesovec, Sep 10 2014

Crossrefs

Cf. A052399 for T_6(n), A047890 for T_5(n), A047889 for T_4(n).
Column k=10 of A214015.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! / mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) option remember;
          `if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
           g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
        end:
    a:= n-> g(n, 10, []):
    seq(a(n), n=0..25); # Vaclav Kotesovec, Sep 10 2014, after Alois P. Heinz
  • Mathematica
    RecurrenceTable[{-7372800*(-4 + n)^2*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(15 + 2*n)*a[-5 + n] + 256*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(11018760 + 4743323*n + 577824*n^2 + 21076*n^3)*a[-4 + n]-8*(-2 + n)^2*(-1 + n)^2*(2488711560 + 2208119423*n + 580006399*n^2 + 64938154*n^3 + 3273732*n^4 + 61160*n^5)*a[-3 + n] + 4*(-1 + n)^2*(8002290720 + 21962910556*n + 10433770264*n^2 + 2088552609*n^3 + 215646686*n^4 + 12084237*n^5 + 349536*n^6 + 4092*n^7)*a[-2 + n]-2*(-45705600000 + 64584000000*n + 68412531600*n^2 + 22314826244*n^3 + 3672058745*n^4 + 350428790*n^5 + 20286926*n^6 + 704088*n^7 + 13497*n^8 + 110*n^9)*a[-1 + n] + (9 + n)^2*(16 + n)^2*(21 + n)^2*(24 + n)^2*(25 + n)*a[n]==0,a[1]==1,a[2]==2,a[3]==6,a[4]==24,a[5]==120},a,{n,1,20}] (* Vaclav Kotesovec, Sep 10 2014 *)

Formula

a(n) ~ 546852789 * 2^(2*n + 26)* 5^(2*n + 55) / (n^(99/2) * Pi^(9/2)). - Vaclav Kotesovec, Sep 10 2014
Recurrence: (n+9)^2*(n + 16)^2*(n + 21)^2*(n + 24)^2*(n + 25)*a(n) = 2*(110*n^9 + 13497*n^8 + 704088*n^7 + 20286926*n^6 + 350428790*n^5 + 3672058745*n^4 + 22314826244*n^3 + 68412531600*n^2 + 64584000000*n - 45705600000)*a(n-1) - 4*(n-1)^2*(4092*n^7 + 349536*n^6 + 12084237*n^5 + 215646686*n^4 + 2088552609*n^3 + 10433770264*n^2 + 21962910556*n + 8002290720)*a(n-2) + 8*(n-2)^2*(n-1)^2*(61160*n^5 + 3273732*n^4 + 64938154*n^3 + 580006399*n^2 + 2208119423*n + 2488711560)*a(n-3) - 256*(n-3)^2*(n-2)^2*(n-1)^2*(21076*n^3 + 577824*n^2 + 4743323*n + 11018760)*a(n-4) + 7372800*(n-4)^2*(n-3)^2*(n-2)^2*(n-1)^2*(2*n + 15)*a(n-5). - Vaclav Kotesovec, Sep 10 2014
Showing 1-9 of 9 results.