A256229 Powering the decimal digits of n (right-associative) with 0^0 = 1 by convention.
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 1, 6, 36, 216, 1296
Offset: 1
Examples
a(253) = 2^5^3 = 2^(5^3) = 2^125 = 42535295865117307932921825928971026432.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..237
- Wikipedia, Zero to the power of zero
Programs
-
Maple
a:= proc(n) local m, r; m, r:= n, 1; while m>0 do r:= irem(m, 10, 'm')^r od; r end: seq(a(n), n=1..100); # Alois P. Heinz, Mar 19 2015
-
Mathematica
Power @@ IntegerDigits@ # & /@ Range@ 64 /. Indeterminate -> 1 (* Michael De Vlieger, Mar 21 2015 *)
-
PARI
A256229(n,p=1)={until(!n\=10,p=(n%10)^p);p}
-
Python
def A256229(n): y = 1 for d in reversed(str(n)): y = int(d)**y return y # Chai Wah Wu, Mar 21 2015
Extensions
Incorrect comments deleted by Alex Costea, Mar 24 2019
Comments