cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256237 Primes p such that for all 2^k < p the numbers p + 2^k, p - 2^k, p*2^k + 1, and p*2^k - 1 are composite.

Original entry on oeis.org

8923, 24943, 35437, 42533, 52783, 83437, 105953, 116437, 126631, 133241, 145589, 164729, 172331, 192173, 204013, 215279, 254329, 304709, 308899, 398833, 430499, 436687, 454351, 476869, 479909, 483443, 497597, 522479, 527729, 529103, 545257, 561439, 562651
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 20 2015

Keywords

Crossrefs

Subsequence of A256163.

Programs

  • Magma
    lst:=[]; for p in [3..562651 by 2] do if IsPrime(p) then t:=0; k:=0; while 2^k lt p do if IsPrime(p-2^k) or IsPrime(p+2^k) or IsPrime(p*2^k-1) or IsPrime(p*2^k+1) then t:=1; break; end if; k+:=1; end while; if IsZero(t) then Append(~lst, p); end if; end if; end for; lst;