A256250 Total number of ON states after n generations of a cellular automaton on the square grid.
1, 5, 9, 21, 25, 37, 57, 85, 89, 101, 121, 149, 185, 229, 281, 341, 345, 357, 377, 405, 441, 485, 537, 597, 665, 741, 825, 917, 1017, 1125, 1241, 1365, 1369, 1381, 1401, 1429, 1465, 1509, 1561, 1621, 1689, 1765, 1849, 1941, 2041, 2149, 2265, 2389, 2521, 2661, 2809, 2965, 3129, 3301, 3481, 3669, 3865, 4069, 4281, 4501, 4729, 4965, 5209, 5461
Offset: 1
Examples
Also, written as an irregular triangle T(n,k), k >= 1, in which the row lengths are the terms of A011782 the sequence begins: 1; 5; 9, 21; 25, 37, 57, 85; 89, 101,121,149,185,229,281,341; 345,357,377,405,441,485,537,597,665,741,825,917,1017,1125,1241,1365; ... Right border gives the positive terms of A002450. It appears that this triangle at least shares with the triangles from the following sequences; A147562, A162795, A169707, A255366, the positive elements of the columns k, if k is a power of 2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 37.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
- Index entries for sequences related to the Josephus Problem
Crossrefs
Programs
-
Mathematica
1 + 4*Accumulate@ Prepend[Flatten@ Table[Range[1, 2^n - 1, 2], {n, 0, 7}], 0] (* Michael De Vlieger, Nov 03 2022, after Ivan N. Ianakiev at A256249 *)
Formula
a(n) = 1 + 4*A256249(n-1), n >= 1.
Comments