A258399 Number of 4n-length strings of balanced parentheses of exactly n different types that are introduced in ascending order.
1, 2, 98, 11880, 2432430, 714249900, 275335499824, 131928199603200, 75727786603836510, 50713478000403718500, 38843740303576863755100, 33508462196084294380001040, 32157574295254903735909896240, 33990046387543889224733323929120
Offset: 0
Keywords
Examples
a(0) = 1: the empty string. a(1) = 2: ()(), (()). a(2) = A000108(4) * (2^3-1) = 14*7 = 98.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Programs
-
Maple
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end: A:= proc(n, k) option remember; k^n*ctln(n) end: a:= n-> add(A(2*n, n-i)*(-1)^i/((n-i)!*i!), i=0..n): seq(a(n), n=0..15);
-
Mathematica
A[n_, k_] := A[n, k] = k^n CatalanNumber[n]; a[n_] := If[n==0, 1, Sum[A[2n, n-i] (-1)^i/((n-i)! i!), {i, 0, n}]]; a /@ Range[0, 15] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *)
Formula
a(n) = A253180(2n,n).
a(n) ~ c * d^n * n! / n^(5/2), where d = A256254 = -64/(LambertW(-2*exp(-2))*(2 + LambertW(-2*exp(-2)))) = 98.8248737517356857317..., c = 1/(2^(5/2) * Pi^(3/2) * sqrt(1 + LambertW(-2*exp(-2)))) = 0.0412044746356859529237459292541572856326... . - Vaclav Kotesovec, Jun 01 2015, updated Sep 27 2023
a(n) = A210029(n) * (4*n)! / (n! * (2*n)! * (2*n + 1)!), for n>0. - Vaclav Kotesovec, Sep 27 2023