A256256 Total number of ON cells after n generations of cellular automaton on triangular grid, starting from a node, in which every 60-degree wedge looks like the Sierpiński's triangle.
0, 6, 18, 30, 54, 66, 90, 114, 162, 174, 198, 222, 270, 294, 342, 390, 486, 498, 522, 546, 594, 618, 666, 714, 810, 834, 882, 930, 1026, 1074, 1170, 1266, 1458, 1470, 1494, 1518, 1566, 1590, 1638, 1686, 1782, 1806, 1854, 1902, 1998, 2046, 2142, 2238, 2430, 2454, 2502, 2550, 2646, 2694, 2790, 2886, 3078, 3126, 3222, 3318, 3510, 3606, 3798, 3990, 4374
Offset: 0
Keywords
Examples
On the infinite triangular grid we start with all triangular cells turned OFF, so a(0) = 0. At stage 1, in the structure there are six triangular cells turned ON forming a regular hexagon, so a(1) = 6. At stage 2, there are 12 new triangular ON cells forming six rhombuses around the initial hexagon, so a(2) = 6 + 12 = 18. And so on.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16386
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 30.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Mathematica
Prepend[6*FoldList[Plus, 0, Total /@ CellularAutomaton[90, Join[Table[0, {#}], {1}, Table[0, {#}]], #]][[2 ;; -1]], 0] &[63] (* Michael De Vlieger, Nov 03 2022, after Bradley Klee at A006046 *)
-
PARI
a(n) = 6*sum(j=0, n, sum(k=0, j, binomial(j, k) % 2)); \\ Michel Marcus, Apr 01 2015
Formula
a(n) = 6*A006046(n).
Comments