cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256272 G.f.: Sum_{n>=1} Pell(n+1) * x^n / (1 - x^n), where Pell(n) = A000129(n).

Original entry on oeis.org

2, 7, 14, 36, 72, 188, 410, 1021, 2392, 5818, 13862, 33678, 80784, 195440, 470916, 1137710, 2744212, 6627675, 15994430, 38619812, 93222780, 225072548, 543339722, 1311772784, 3166816034, 7645450834, 18457558444, 44560677618, 107578520352, 259717999680, 627013566050, 1513745792655, 3654502889812
Offset: 1

Views

Author

Paul D. Hanna, Jun 01 2015

Keywords

Examples

			G.f.: A(x) = 2*x + 7*x^2 + 14*x^3 + 36*x^4 + 72*x^5 + 188*x^6 +...
where by definition
A(x) = 2*x/(1-x) + 5*x^2/(1-x^2) + 12*x^3/(1-x^3) + 29*x^4/(1-x^4) + 70*x^5/(1-x^5) + 169*x^6/(1-x^6) + 408*x^7/(1-x^7) + 985*x^8/(1-x^8) + 2378*x^9/(1-x^9) + 5741*x^10/(1-x^10) +...+ Pell(n+1)*x^n/(1-x^n) +...
The g.f. is also given by the series identity:
A(x) = x*(2+x)/(1-2*x-x^2) + x^2*(2+x^2)/(1-2*x^2-x^4) + x^3*(2+x^3)/(1-2*x^3-x^6) + x^4*(2+x^4)/(1-2*x^4-x^8) + x^5*(2+x^5)/(1-2*x^5-x^10) + x^6*(2+x^6)/(1-2*x^6-x^12) + x^7*(2+x^7)/(1-2*x^7-x^14) +...+ x^n*(1+x^n)/(1-x^n-x^(2*n)) +...
And also we have the series:
A(x) = x*(2 + x) + x^2*((2+x)^2 + (2+x^2)) + x^3*((2+x)^3 + (2+x^3))
+ x^4*((2+x)^4 + (2+x^2)^2 + (2+x^4)) + x^5*((2+x)^5 + (2+x^5))
+ x^6*((2+x)^6 + (2+x^2)^3 + (2+x^3)^2 + (2+x^6))
+ x^7*((2+x)^7 + (2+x^7))
+ x^8*((2+x)^8 + (2+x^2)^4 + (2+x^4)^2 + (2+x^8))
+ x^9*((2+x)^9 + (2+x^3)^3 + (2+x^9))
+ x^10*((2+x)^10 + (2+x^2)^5 + (2+x^5)^2 + (2+x^10))
+ x^11*((2+x)^11 + (2+x^11))
+ x^12*((2+x)^12 + (2+x^2)^6 + (2+x^3)^4 + (2+x^4)^3 + (2+x^6)^2 + (2+x^12))
+...+ x^n * Sum_{d|n} (2 + x^d)^(n/d) +...
or, more explicitly,
A(x) = x*(2 + x) + x^2*(6 + 4*x + 2*x^2)
+ x^3*(10 + 12*x + 6*x^2 + 2*x^3)
+ x^4*(22 + 32*x + 28*x^2 + 8*x^3 + 3*x^4)
+ x^5*(34 + 80*x + 80*x^2 + 40*x^3 + 10*x^4 + 2*x^5)
+ x^6*(78 + 192*x + 252*x^2 + 164*x^3 + 66*x^4 + 12*x^5 + 4*x^6)
+ x^7*(130 + 448*x + 672*x^2 + 560*x^3 + 280*x^4 + 84*x^5 + 14*x^6 + 2*x^7)
+ x^8*(278 + 1024*x + 1824*x^2 + 1792*x^3 + 1148*x^4 + 448*x^5 + 120*x^6 + 16*x^7 + 4*x^8)
+ x^9*(522 + 2304*x + 4608*x^2 + 5388*x^3 + 4032*x^4 + 2016*x^5 + 678*x^6 + 144*x^7 + 18*x^8 + 3*x^9) +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[Sum[(x^k*(2+x^k))/(1-2*x^k-x^(2*k)), {k, 1, n}], {x, 0, n}]; Array[a, 40] (* Jean-François Alcover, Dec 19 2015 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
    {a(n)=polcoeff(sum(m=1, n, Pell(m+1)*x^m/(1-x^m +x*O(x^n))), n)}
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=1, n, x^m*(2+x^m)/(1-2*x^m-x^(2*m) +x*O(x^n)) ), n)}
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=x+x^2); A=sum(m=1, n, x^m*sumdiv(m, d, (2 + x^(m/d) +x*O(x^n))^d) ); polcoeff(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=1} x^n * (2 + x^n) / (1 - 2*x^n - x^(2*n)).
G.f.: Sum_{n>=1} x^n * Sum_{d|n} (2 + x^d)^(n/d).
a(2*n^2) == 1 (mod 2), with a(n) == 0 (mod 2) elsewhere.
a(n) ~ (1+sqrt(2))^(n+1) / (2*sqrt(2)). - Vaclav Kotesovec, Jun 02 2015